These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 22521099)

  • 1. The use of Bayesian networks for nanoparticle risk forecasting: model formulation and baseline evaluation.
    Money ES; Reckhow KH; Wiesner MR
    Sci Total Environ; 2012 Jun; 426():436-45. PubMed ID: 22521099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation and sensitivity of the FINE Bayesian network for forecasting aquatic exposure to nano-silver.
    Money ES; Barton LE; Dawson J; Reckhow KH; Wiesner MR
    Sci Total Environ; 2014 Mar; 473-474():685-91. PubMed ID: 24412914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The carcinogenic potential of nanomaterials, their release from products and options for regulating them.
    Becker H; Herzberg F; Schulte A; Kolossa-Gehring M
    Int J Hyg Environ Health; 2011 Jun; 214(3):231-8. PubMed ID: 21168363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing wastewater micropollutant loads with approximate Bayesian computations.
    Rieckermann J; Anta J; Scheidegger A; Ort C
    Environ Sci Technol; 2011 May; 45(10):4399-406. PubMed ID: 21504210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact assessment of emission management strategies of the pharmaceuticals Metformin and Metoprolol to the aquatic environment using Bayesian networks.
    Brandmayr C; Kerber H; Winker M; Schramm E
    Sci Total Environ; 2015 Nov; 532():605-16. PubMed ID: 26115339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A risk assessment framework for assessing metallic nanomaterials of environmental concern: aquatic exposure and behavior.
    O'Brien NJ; Cummins EJ
    Risk Anal; 2011 May; 31(5):706-26. PubMed ID: 21155861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Meta-analysis of the Italian studies on short-term effects of air pollution].
    Biggeri A; Bellini P; Terracini B;
    Epidemiol Prev; 2001; 25(2 Suppl):1-71. PubMed ID: 11515188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A probabilistic model estimating oil spill clean-up costs--a case study for the Gulf of Finland.
    Montewka J; Weckström M; Kujala P
    Mar Pollut Bull; 2013 Nov; 76(1-2):61-71. PubMed ID: 24113092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling exposure to persistent chemicals in hazard and risk assessment.
    Cowan-Ellsberry CE; McLachlan MS; Arnot JA; Macleod M; McKone TE; Wania F
    Integr Environ Assess Manag; 2009 Oct; 5(4):662-79. PubMed ID: 19552503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precaution, uncertainty and causation in environmental decisions.
    Ricci PF; Rice D; Ziagos J; Cox LA
    Environ Int; 2003 Apr; 29(1):1-19. PubMed ID: 12605931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Bayesian approach to probabilistic risk assessment in municipal playgrounds.
    Iribarren I; Chacón E; De Miguel E
    Arch Environ Contam Toxicol; 2009 Jan; 56(1):165-72. PubMed ID: 18427709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stoffenmanager exposure model: company-specific exposure assessments using a Bayesian methodology.
    van de Ven P; Fransman W; Schinkel J; Rubingh C; Warren N; Tielemans E
    J Occup Environ Hyg; 2010 Apr; 7(4):216-23. PubMed ID: 20146134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of metal nanoparticles from silver and copper objects: nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment.
    Glover RD; Miller JM; Hutchison JE
    ACS Nano; 2011 Nov; 5(11):8950-7. PubMed ID: 21985489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of potential impacts and natural resource damages of oil.
    McCay DF; Rowe JJ; Whittier N; Sankaranarayanan S; Etkin DS
    J Hazard Mater; 2004 Feb; 107(1-2):11-25. PubMed ID: 15036639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A probabilistic model for accidental cargo oil outflow from product tankers in a ship-ship collision.
    Goerlandt F; Montewka J
    Mar Pollut Bull; 2014 Feb; 79(1-2):130-44. PubMed ID: 24462237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The London low emission zone baseline study.
    Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forecasting risk along a river basin using a probabilistic and deterministic model for environmental risk assessment of effluents through ecotoxicological evaluation and GIS.
    Gutiérrez S; Fernandez C; Barata C; Tarazona JV
    Sci Total Environ; 2009 Dec; 408(2):294-303. PubMed ID: 19875154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the contribution of nanoparticles (Zn, Ti, Ag) to the annual metal load in the Dutch reaches of the Rhine and Meuse.
    Markus AA; Parsons JR; Roex EW; Kenter GC; Laane RW
    Sci Total Environ; 2013 Jul; 456-457():154-60. PubMed ID: 23591066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probabilistic ecological risk assessment of DDTs in the Bohai Bay based on a food web bioaccumulation model.
    Wang B; Yu G; Huang J; Wang T; Hu H
    Sci Total Environ; 2011 Jan; 409(3):495-502. PubMed ID: 21075423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.