BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 22521946)

  • 1. A nano switch mechanism for the redox-responsive sulfotransferase.
    Lin CH; Lin ES; Su TM; Hung KS; Yang YS
    Biochem Pharmacol; 2012 Jul; 84(2):224-31. PubMed ID: 22521946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox control of aryl sulfotransferase specificity.
    Marshall AD; McPhie P; Jakoby WB
    Arch Biochem Biophys; 2000 Oct; 382(1):95-104. PubMed ID: 11051102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dimerization is responsible for the structural stability of human sulfotransferase 1A1.
    Lu LY; Chiang HP; Chen WT; Yang YS
    Drug Metab Dispos; 2009 May; 37(5):1083-8. PubMed ID: 19237513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of the effects of manipulation of the cysteine residues of rat aryl sulfotransferase IV.
    Marshall AD; Darbyshire JF; McPhie P; Jakoby WB
    Chem Biol Interact; 1998 Feb; 109(1-3):107-16. PubMed ID: 9566737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox regulation of human estrogen sulfotransferase (hSULT1E1).
    Maiti S; Zhang J; Chen G
    Biochem Pharmacol; 2007 May; 73(9):1474-81. PubMed ID: 17266938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of bovine phenol sulfotransferases: evidence of a major role for SULT1B1 in the liver.
    Choughule KV; Locuson CW; Coughtrie MW
    Xenobiotica; 2015; 45(6):495-502. PubMed ID: 25539458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of posttranslational regulation of phenol sulfotransferase: expression of two enzyme forms through redox modification and nucleotide binding.
    Su TM; Yang YS
    Biochemistry; 2003 Jun; 42(22):6863-70. PubMed ID: 12779341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DsbL and DsbI form a specific dithiol oxidase system for periplasmic arylsulfate sulfotransferase in uropathogenic Escherichia coli.
    Grimshaw JP; Stirnimann CU; Brozzo MS; Malojcic G; Grütter MG; Capitani G; Glockshuber R
    J Mol Biol; 2008 Jul; 380(4):667-80. PubMed ID: 18565543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histidine residues in human phenol sulfotransferases.
    Chen G
    Biochem Pharmacol; 2004 Apr; 67(7):1355-61. PubMed ID: 15013851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of mSULT1D1, a mouse catecholamine sulfotransferase.
    Teramoto T; Sakakibara Y; Inada K; Kurogi K; Liu MC; Suiko M; Kimura M; Kakuta Y
    FEBS Lett; 2008 Nov; 582(28):3909-14. PubMed ID: 18977225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular cloning, expression, and functional characterization of novel mouse sulfotransferases.
    Sakakibara Y; Yanagisawa K; Takami Y; Nakayama T; Suiko M; Liu MC
    Biochem Biophys Res Commun; 1998 Jun; 247(3):681-6. PubMed ID: 9647753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of the catalytic function of human hydroxysteroid sulfotransferase hSULT2A1 by formation of disulfide bonds.
    Qin X; Teesch LM; Duffel MW
    Drug Metab Dispos; 2013 May; 41(5):1094-103. PubMed ID: 23444386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic properties of human dopamine sulfotransferase (SULT1A3) expressed in prokaryotic and eukaryotic systems: comparison with the recombinant enzyme purified from Escherichia coli.
    Dajani R; Sharp S; Graham S; Bethell SS; Cooke RM; Jamieson DJ; Coughtrie MW
    Protein Expr Purif; 1999 Jun; 16(1):11-8. PubMed ID: 10336855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of human catecholamine sulfotransferase.
    Bidwell LM; McManus ME; Gaedigk A; Kakuta Y; Negishi M; Pedersen L; Martin JL
    J Mol Biol; 1999 Oct; 293(3):521-30. PubMed ID: 10543947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation-reduction properties of two engineered redox-sensitive mutant Escherichia coli malate dehydrogenases.
    Setterdahl A; Hirasawa M; Bucher LM; Dholakia CA; Jacquot P; Yards H; Miller F; Stevens FJ; Knaff DB; Anderson LE
    Arch Biochem Biophys; 2000 Oct; 382(1):15-21. PubMed ID: 11051092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the DeltapKa between the active site cysteines of thioredoxin and DsbA.
    Carvalho AT; Fernandes PA; Ramos MJ
    J Comput Chem; 2006 Jun; 27(8):966-75. PubMed ID: 16586531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A P-loop related motif (GxxGxxK) highly conserved in sulfotransferases is required for binding the activated sulfate donor.
    Komatsu K; Driscoll WJ; Koh YC; Strott CA
    Biochem Biophys Res Commun; 1994 Nov; 204(3):1178-85. PubMed ID: 7980593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly selective bioactivation of 1- and 2-hydroxy-3-methylcholanthrene to mutagens by individual human and other mammalian sulphotransferases expressed in Salmonella typhimurium.
    Meinl W; Tsoi C; Swedmark S; Tibbs ZE; Falany CN; Glatt H
    Mutagenesis; 2013 Sep; 28(5):609-19. PubMed ID: 23894158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial expression, characterization, and disulfide bond determination of soluble human NTPDase6 (CD39L2) nucleotidase: implications for structure and function.
    Ivanenkov VV; Murphy-Piedmonte DM; Kirley TL
    Biochemistry; 2003 Oct; 42(40):11726-35. PubMed ID: 14529283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Canine sulfotransferase SULT1A1: molecular cloning, expression, and characterization.
    Tsoi C; Morgenstern R; Swedmark S
    Arch Biochem Biophys; 2002 May; 401(2):125-33. PubMed ID: 12054462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.