These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 22522014)

  • 21. Constructed wetlands as green tools for management of boron mine wastewater.
    Türker OC; Türe C; Böcük H; Yakar A
    Int J Phytoremediation; 2014; 16(6):537-53. PubMed ID: 24912241
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accelerated biodegradation of pyrene and benzo[a]pyrene in the Phragmites australis rhizosphere by bacteria-root exudate interactions.
    Toyama T; Furukawa T; Maeda N; Inoue D; Sei K; Mori K; Kikuchi S; Ike M
    Water Res; 2011 Feb; 45(4):1629-38. PubMed ID: 21196023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accumulation of Metals and Boron in Phragmites australis Planted in Constructed Wetlands Polishing Real Electroplating Wastewater.
    Sochacki A; Guy B; Faure O; Surmacz-Górska J
    Int J Phytoremediation; 2015; 17(11):1068-72. PubMed ID: 25848916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of full-scale natural systems for the removal of PPCPs from wastewater in small communities.
    Hijosa-Valsero M; Matamoros V; Martín-Villacorta J; Bécares E; Bayona JM
    Water Res; 2010 Mar; 44(5):1429-39. PubMed ID: 19913872
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrocarbon degradation potential of salt marsh plant-microorganisms associations.
    Ribeiro H; Mucha AP; Almeida CM; Bordalo AA
    Biodegradation; 2011 Jul; 22(4):729-39. PubMed ID: 21188477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study of praziquantel phytoremediation and transformation and its removal in constructed wetland.
    Marsik P; Podlipna R; Vanek T
    J Hazard Mater; 2017 Feb; 323(Pt A):394-399. PubMed ID: 27241398
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of blast furnace granulated slag as a substrate in vertical flow reed beds: field application.
    Asuman Korkusuz E; Beklioğlu M; Demirer GN
    Bioresour Technol; 2007 Aug; 98(11):2089-101. PubMed ID: 17070037
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparative study of five horizontal subsurface flow constructed wetlands using different plant species for domestic wastewater treatment.
    Villaseñor Camacho J; De Lucas Martínez A; Gómez Gómez R; Mena Sanz J
    Environ Technol; 2007 Dec; 28(12):1333-43. PubMed ID: 18341144
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temporal evolution in PPCP removal from urban wastewater by constructed wetlands of different configuration: a medium-term study.
    Reyes-Contreras C; Hijosa-Valsero M; Sidrach-Cardona R; Bayona JM; Bécares E
    Chemosphere; 2012 Jun; 88(2):161-7. PubMed ID: 22436587
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evapotranspiration from pilot-scale constructed wetlands planted with Phragmites australis in a Mediterranean environment.
    Milani M; Toscano A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(5):568-80. PubMed ID: 23383642
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal of heavy metals in constructed wetland microcosmos: effects of sorption, sulphate reduction and Phragmites australis.
    Lesage E; Tack FM; De Pauw N; Verloo MG
    Commun Agric Appl Biol Sci; 2006; 71(1):59-62. PubMed ID: 17191474
    [No Abstract]   [Full Text] [Related]  

  • 32. Treatment of industrial wastewater with two-stage constructed wetlands planted with Typha latifolia and Phragmites australis.
    Calheiros CS; Rangel AO; Castro PM
    Bioresour Technol; 2009 Jul; 100(13):3205-13. PubMed ID: 19289277
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficiency of RO/NF membranes at the removal of veterinary antibiotics.
    Dolar D; Vuković A; Ašperger D; Košutić K
    Water Sci Technol; 2012; 65(2):317-23. PubMed ID: 22233911
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biodegradation of enrofloxacin by microbial consortia obtained from rhizosediments of two estuarine plants.
    Santos F; Mucha AP; Alexandrino DAM; Almeida CMR; Carvalho MF
    J Environ Manage; 2019 Feb; 231():1145-1153. PubMed ID: 30602239
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Removal of nutrients in various types of constructed wetlands.
    Vymazal J
    Sci Total Environ; 2007 Jul; 380(1-3):48-65. PubMed ID: 17078997
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Performance evaluation using a three compartment mass balance for the removal of volatile organic compounds in pilot scale constructed wetlands.
    Seeger EM; Reiche N; Kuschk P; Borsdorf H; Kaestner M
    Environ Sci Technol; 2011 Oct; 45(19):8467-74. PubMed ID: 21848285
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of plants on microbial activity in a vertical-downflow wetland system treating waste activated sludge with high organic matter concentrations.
    Wang R; Baldy V; Périssol C; Korboulewsky N
    J Environ Manage; 2012 Mar; 95 Suppl():S158-64. PubMed ID: 21514037
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Response of a salt marsh microbial community to antibiotic contamination.
    Fernandes JP; Almeida CM; Basto MC; Mucha AP
    Sci Total Environ; 2015 Nov; 532():301-8. PubMed ID: 26081732
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of phenol, bisphenol A, and 4-tert-butylphenol from synthetic landfill leachate by vertical flow constructed wetlands.
    A D; Fujii D; Soda S; Machimura T; Ike M
    Sci Total Environ; 2017 Feb; 578():566-576. PubMed ID: 27836343
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nitrogen transformations and retention in planted and artificially aerated constructed wetlands.
    Maltais-Landry G; Maranger R; Brisson J; Chazarenc F
    Water Res; 2009 Feb; 43(2):535-45. PubMed ID: 19036399
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.