BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 22522017)

  • 1. Behaviors of glucose decomposition during acid-catalyzed hydrothermal hydrolysis of pretreated Gelidium amansii.
    Jeong TS; Choi CH; Lee JY; Oh KK
    Bioresour Technol; 2012 Jul; 116():435-40. PubMed ID: 22522017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-stage acid saccharification of fractionated Gelidium amansii minimizing the sugar decomposition.
    Jeong TS; Kim YS; Oh KK
    Bioresour Technol; 2011 Nov; 102(22):10529-34. PubMed ID: 21963246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii.
    Ra CH; Jeong GT; Shin MK; Kim SK
    Bioresour Technol; 2013 Jul; 140():421-5. PubMed ID: 23714097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of sugars and levulinic acid from marine biomass Gelidium amansii.
    Jeong GT; Park DH
    Appl Biochem Biotechnol; 2010 May; 161(1-8):41-52. PubMed ID: 19830598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermochemical pretreatment of lignocellulose to enhance methane fermentation: I. Monosaccharide and furfurals hydrothermal decomposition and product formation rates.
    Baugh KD; McCarty PL
    Biotechnol Bioeng; 1988 Jan; 31(1):50-61. PubMed ID: 18581563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sugar yields from sunflower stalks treated by hydrothermolysis and subsequent enzymatic hydrolysis.
    Jung CD; Yu JH; Eom IY; Hong KS
    Bioresour Technol; 2013 Jun; 138():1-7. PubMed ID: 23612155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii).
    Meinita MD; Hong YK; Jeong GT
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):123-8. PubMed ID: 21909670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Valorization of Gelidium amansii for dual production of D-galactonic acid and 5-hydroxymethyl-2-furancarboxylic acid by chemo-biological approach.
    Liu P; Xie J; Tan H; Zhou F; Zou L; Ouyang J
    Microb Cell Fact; 2020 May; 19(1):104. PubMed ID: 32410635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of red-algae Gracilaria verrucosa to sugars, levulinic acid and 5-hydroxymethylfurfural.
    Jeong GT; Ra CH; Hong YK; Kim JK; Kong IS; Kim SK; Park DH
    Bioprocess Biosyst Eng; 2015 Feb; 38(2):207-17. PubMed ID: 25042893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced ethanol production by fermentation of Gelidium amansii hydrolysate using a detoxification process and yeasts acclimated to high-salt concentration.
    Ra CH; Jung JH; Sunwoo IY; Jeong GT; Kim SK
    Bioprocess Biosyst Eng; 2015 Jun; 38(6):1201-7. PubMed ID: 25627467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation.
    Park JH; Hong JY; Jang HC; Oh SG; Kim SH; Yoon JJ; Kim YJ
    Bioresour Technol; 2012 Mar; 108():83-8. PubMed ID: 22261657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid acid-catalyzed cellulose hydrolysis monitored by in situ ATR-IR spectroscopy.
    Zakzeski J; Grisel RJ; Smit AT; Weckhuysen BM
    ChemSusChem; 2012 Feb; 5(2):430-7. PubMed ID: 22315193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of solid-acid catalyst and marine macro-algae Gracilaria verrucosa to production of fermentable sugars.
    Jeong GT; Kim SK; Park DH
    Bioresour Technol; 2015 Apr; 181():1-6. PubMed ID: 25625460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acid-catalyzed conversion of mono- and poly-sugars into platform chemicals: effects of molecular structure of sugar substrate.
    Hu X; Wu L; Wang Y; Song Y; Mourant D; Gunawan R; Gholizadeh M; Li CZ
    Bioresour Technol; 2013 Apr; 133():469-74. PubMed ID: 23454803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF.
    Cantarella M; Cantarella L; Gallifuoco A; Spera A; Alfani F
    Biotechnol Prog; 2004; 20(1):200-6. PubMed ID: 14763843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The roles of xylan and lignin in oxalic acid pretreated corncob during separate enzymatic hydrolysis and ethanol fermentation.
    Lee JW; Rodrigues RC; Kim HJ; Choi IG; Jeffries TW
    Bioresour Technol; 2010 Jun; 101(12):4379-85. PubMed ID: 20188541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fermentable sugars recovery from lignocellulosic waste-newspaper by catalytic hydrolysis.
    Orozco AM; Al-Muhtaseb AH; Rooney D; Walker GM; Aiouache F; Ahmad M
    Environ Technol; 2013; 34(21-24):3005-16. PubMed ID: 24617059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Studies on immobilized cellobiase].
    Shen XL; Xia LM
    Sheng Wu Gong Cheng Xue Bao; 2003 Mar; 19(2):236-9. PubMed ID: 15966329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification.
    Cara C; Ruiz E; Oliva JM; Sáez F; Castro E
    Bioresour Technol; 2008 Apr; 99(6):1869-76. PubMed ID: 17498947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of 2,3-Butanediol Production from Red Seaweed
    Ra CH; Seo JH; Jeong GT; Kim SK
    J Microbiol Biotechnol; 2020 Dec; 30(12):1912-1918. PubMed ID: 32958731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.