BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 22522030)

  • 1. Interaction of gentamicin polycation with model and cell membranes.
    Kovács E; Savopol T; Iordache MM; Săplăcan L; Sobaru I; Istrate C; Mingeot-Leclercq MP; Moisescu MG
    Bioelectrochemistry; 2012 Oct; 87():230-5. PubMed ID: 22522030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes.
    Parasassi T; Gratton E; Yu WM; Wilson P; Levi M
    Biophys J; 1997 Jun; 72(6):2413-29. PubMed ID: 9168019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring the organization and dynamics of bovine hippocampal membranes utilizing Laurdan generalized polarization.
    Mukherjee S; Chattopadhyay A
    Biochim Biophys Acta; 2005 Aug; 1714(1):43-55. PubMed ID: 16042963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of osmotic stress on the biophysical behavior of the Bacillus subtilis membrane studied by dynamic and steady-state fluorescence anisotropy.
    López CS; Garda HA; Rivas EA
    Arch Biochem Biophys; 2002 Dec; 408(2):220-8. PubMed ID: 12464275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disorder Amidst Membrane Order: Standardizing Laurdan Generalized Polarization and Membrane Fluidity Terms.
    Jay AG; Hamilton JA
    J Fluoresc; 2017 Jan; 27(1):243-249. PubMed ID: 27738919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane effects of lysozyme amyloid fibrils.
    Kastorna A; Trusova V; Gorbenko G; Kinnunen P
    Chem Phys Lipids; 2012 Apr; 165(3):331-7. PubMed ID: 22406142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quercetin and epigallocatechin-3-gallate effect on the anisotropy of model membranes with cholesterol.
    Ionescu D; Margină D; Ilie M; Iftime A; Ganea C
    Food Chem Toxicol; 2013 Nov; 61():94-100. PubMed ID: 23523830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction study between maltose-modified PPI dendrimers and lipidic model membranes.
    Wrobel D; Appelhans D; Signorelli M; Wiesner B; Fessas D; Scheler U; Voit B; Maly J
    Biochim Biophys Acta; 2015 Jul; 1848(7):1490-501. PubMed ID: 25843678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH-dependent association of SN-38 with lipid bilayers of a novel liposomal formulation.
    Peikov V; Ugwu S; Parmar M; Zhang A; Ahmad I
    Int J Pharm; 2005 Aug; 299(1-2):92-9. PubMed ID: 15996839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial creatine kinase binding to phospholipids decreases fluidity of membranes and promotes new lipid-induced beta structures as monitored by red edge excitation shift, laurdan fluorescence, and FTIR.
    Granjon T; Vacheron MJ; Vial C; Buchet R
    Biochemistry; 2001 May; 40(20):6016-26. PubMed ID: 11352737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coexistence of domains with distinct order and polarity in fluid bacterial membranes.
    Vanounou S; Pines D; Pines E; Parola AH; Fishov I
    Photochem Photobiol; 2002 Jul; 76(1):1-11. PubMed ID: 12126299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of a phosphatidylcholine derivative of diphenyl hexatriene (DPH-PC) in lymphocyte membranes. A comparison with DPH and the cationic derivative TMA-DPH using static and dynamic fluorescence.
    Ferretti G; Tangorra A; Zolese G; Curatola G
    Membr Biochem; 1993; 10(1):17-27. PubMed ID: 8510559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by laurdan generalized polarization and fluorescence energy transfer.
    Antollini SS; Soto MA; Bonini de Romanelli I; Gutiérrez-Merino C; Sotomayor P; Barrantes FJ
    Biophys J; 1996 Mar; 70(3):1275-84. PubMed ID: 8785283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphatidylinositol induces fluid phase formation and packing defects in phosphatidylcholine model membranes.
    Peng A; Pisal DS; Doty A; Balu-Iyer SV
    Chem Phys Lipids; 2012 Jan; 165(1):15-22. PubMed ID: 22024173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melittin Induces Local Order Changes in Artificial and Biological Membranes as Revealed by Spectral Analysis of Laurdan Fluorescence.
    Zorilă B; Necula G; Radu M; Bacalum M
    Toxins (Basel); 2020 Nov; 12(11):. PubMed ID: 33171598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LAURDAN since Weber: The Quest for Visualizing Membrane Heterogeneity.
    Gunther G; Malacrida L; Jameson DM; Gratton E; Sánchez SA
    Acc Chem Res; 2021 Feb; 54(4):976-987. PubMed ID: 33513300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The new fluorescent membrane probe Ahba: a comparative study with the largely used Laurdan.
    Vequi-Suplicy CC; Lamy MT; Marquezin CA
    J Fluoresc; 2013 May; 23(3):479-86. PubMed ID: 23397490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of lactose permease of Escherichia coli on the anisotropy and electrostatic surface potential of liposomes.
    Merino-Montero S; Montero MT; Hernández-Borrell J
    Biophys Chem; 2006 Jan; 119(1):101-5. PubMed ID: 16242835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of amyloid β-peptide on the fluidity of phosphatidylcholine membranes: Uses and limitations of diphenylhexatriene fluorescence anisotropy.
    Suzuki M; Miura T
    Biochim Biophys Acta; 2015 Mar; 1848(3):753-9. PubMed ID: 25497764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of steady-state laurdan fluorescence to detect changes in liquid ordered phases in human erythrocyte membranes.
    Vest R; Wallis R; Jensen LB; Haws AC; Callister J; Brimhall B; Judd AM; Bell JD
    J Membr Biol; 2006 May; 211(1):15-25. PubMed ID: 16988865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.