These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 225221)
1. Reconstitution of malate-aspartate and alpha-glycerophosphate shuttle activity in rat skeletal muscle mitochondria. Bookelman H; Trijbels JM; Sengers RC; Janssen AJ; Veerkamp JH; Stadhouders AM Int J Biochem; 1979; 10(5):411-4. PubMed ID: 225221 [No Abstract] [Full Text] [Related]
2. Suppression of the mitochondrial oxidation of (-)-palmitylcarnitine by the malate-aspartate and alpha-glycerophosphate shuttles. Lumeng L; Bremer J; Davis EJ J Biol Chem; 1976 Jan; 251(2):277-84. PubMed ID: 1245472 [TBL] [Abstract][Full Text] [Related]
3. Functional significance of the malate-aspartate shuttle for the oxidation of cytoplasmic reducing equivalents in rat heart. Safer H; Williamson JR Recent Adv Stud Cardiac Struct Metab; 1972; 1():34-43. PubMed ID: 4377825 [No Abstract] [Full Text] [Related]
4. Studies on the active transfer of reducing equivalents into mitochondria via the malate-aspartate shuttle. Bremer J; Davis EJ Biochim Biophys Acta; 1975 Mar; 376(3):387-97. PubMed ID: 164904 [TBL] [Abstract][Full Text] [Related]
5. Metabolic adaptation of the hypertrophied heart: role of the malate/aspartate and alpha-glycerophosphate shuttles. Rupert BE; Segar JL; Schutte BC; Scholz TD J Mol Cell Cardiol; 2000 Dec; 32(12):2287-97. PubMed ID: 11113004 [TBL] [Abstract][Full Text] [Related]
6. Reconstruction of rat skeletal muscle glycerophosphate shuttle. Scisłowski PW; Swierczyński J; Aleksandrowicz Z; Zydowo M Mol Cell Biochem; 1979 Sep; 27(1):3-6. PubMed ID: 229405 [TBL] [Abstract][Full Text] [Related]
7. Mitochondrial shuttle activities in hyperthyroid and normal rats and guinea pigs. Tobin RB; Berdanier CD; Ecklund RE; DeVore V; Caton C J Environ Pathol Toxicol; 1979 Dec; 3(1-2):289-305. PubMed ID: 232712 [No Abstract] [Full Text] [Related]
8. Oxidation of reduced nicotinamide-adenine dinucleotide by the malate-aspartate shuttle in Ehrlich ascites tumour cells. Dionisi O; Longhi G; Eboli ML; Galeotti T; Terranova T Biochim Biophys Acta; 1974 Mar; 333(3):577-80. PubMed ID: 4367964 [No Abstract] [Full Text] [Related]
10. Characterization of shuttle mechanisms for the transport of reducing equivalents into mitochondria. Cederbaum AI; Lieber CS; Beattie DS; Rubin E Arch Biochem Biophys; 1973 Oct; 158(2):763-81. PubMed ID: 4782532 [No Abstract] [Full Text] [Related]
11. Reducing equivalent shuttles in developing porcine myocardium: enhanced capacity in the newborn heart. Scholz TD; Koppenhafer SL Pediatr Res; 1995 Aug; 38(2):221-7. PubMed ID: 7478820 [TBL] [Abstract][Full Text] [Related]
12. Control of the transport of reducing equivalents across the mitochondrial membrane in perfused rat heart. Safer B; Smith CM; Williamson JR J Mol Cell Cardiol; 1971 Jun; 2(2):111-24. PubMed ID: 4329775 [No Abstract] [Full Text] [Related]
13. Diet effects on membrane phospholipid fatty acids and mitochondrial function in BHE rats. Deaver OE; Wander RC; McCusker RH; Berdanier CD J Nutr; 1986 Jul; 116(7):1148-55. PubMed ID: 2943879 [TBL] [Abstract][Full Text] [Related]
14. Mitochondria from the left heart ventricles of both normotensive and spontaneously hypertensive rats oxidize externally added NADH mostly via a novel malate/oxaloacetate shuttle as reconstructed in vitro. Atlante A; Seccia TM; De Bari L; Marra E; Passarella S Int J Mol Med; 2006 Jul; 18(1):177-86. PubMed ID: 16786170 [TBL] [Abstract][Full Text] [Related]
16. Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools. McKenna MC; Waagepetersen HS; Schousboe A; Sonnewald U Biochem Pharmacol; 2006 Feb; 71(4):399-407. PubMed ID: 16368075 [TBL] [Abstract][Full Text] [Related]
17. In vivo and in vitro adenosine stimulation of ethanol oxidation by hepatocytes, and the role of the malate-aspartate shuttle. Hernández-Muñoz R; Díaz-Muñoz M; Chagoya de Sánchez V Biochim Biophys Acta; 1987 Sep; 930(2):254-63. PubMed ID: 2887212 [TBL] [Abstract][Full Text] [Related]
18. Mitochondrial-cytosolic interactions in cardiac tissue: role of the malate-aspartate cycle in the removal of glycolytic NADH from the cytosol. Williamson JR; Safer B; LaNoue KF; Smith CM; Walajtys E Symp Soc Exp Biol; 1973; 27():241-81. PubMed ID: 4358367 [No Abstract] [Full Text] [Related]
19. Substrate-dependent utilization of the glycerol 3-phosphate or malate/aspartate redox shuttles by Ehrlich ascites cells. Grivell AR; Korpelainen EI; Williams CJ; Berry MN Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):665-71. PubMed ID: 7654209 [TBL] [Abstract][Full Text] [Related]
20. Effects of pyrazole, 4-bromopyrazole and 4-methylpyrazole on mitochondrial function. Cederbaum AI; Rubin E Biochem Pharmacol; 1974 Jan; 23(2):203-13. PubMed ID: 4360345 [No Abstract] [Full Text] [Related] [Next] [New Search]