BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 22522127)

  • 1. Structural insights into the dehydroascorbate reductase activity of human omega-class glutathione transferases.
    Zhou H; Brock J; Liu D; Board PG; Oakley AJ
    J Mol Biol; 2012 Jul; 420(3):190-203. PubMed ID: 22522127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning, expression and characterization of human glutathione S-transferase Omega 2.
    Wang L; Xu J; Ji C; Gu S; Lv Y; Li S; Xu Y; Xie Y; Mao Y
    Int J Mol Med; 2005 Jul; 16(1):19-27. PubMed ID: 15942673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the omega class of glutathione transferases.
    Whitbread AK; Masoumi A; Tetlow N; Schmuck E; Coggan M; Board PG
    Methods Enzymol; 2005; 401():78-99. PubMed ID: 16399380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional structure of a Bombyx mori Omega-class glutathione transferase.
    Yamamoto K; Suzuki M; Higashiura A; Nakagawa A
    Biochem Biophys Res Commun; 2013 Sep; 438(4):588-93. PubMed ID: 23939046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arginine 15 stabilizes an S(N)Ar reaction transition state and the binding of anionic ligands at the active site of human glutathione transferase A1-1.
    Gildenhuys S; Dobreva M; Kinsley N; Sayed Y; Burke J; Pelly S; Gordon GP; Sayed M; Sewell T; Dirr HW
    Biophys Chem; 2010 Feb; 146(2-3):118-25. PubMed ID: 19959275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of Glycine max glutathione transferase in complex with glutathione: investigation of the mechanism operating by the Tau class glutathione transferases.
    Axarli I; Dhavala P; Papageorgiou AC; Labrou NE
    Biochem J; 2009 Aug; 422(2):247-56. PubMed ID: 19538182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutamate-64, a newly identified residue of the functionally conserved electron-sharing network contributes to catalysis and structural integrity of glutathione transferases.
    Winayanuwattikun P; Ketterman AJ
    Biochem J; 2007 Mar; 402(2):339-48. PubMed ID: 17100654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic properties of glutathione-binding residues in a tau class glutathione transferase (PtGSTU1) from Pinus tabulaeformis.
    Zeng QY; Wang XR
    FEBS Lett; 2005 May; 579(12):2657-62. PubMed ID: 15862305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the monomethylarsonate reductase and dehydroascorbate reductase activities of Omega class glutathione transferase variants: implications for arsenic metabolism and the age-at-onset of Alzheimer's and Parkinson's diseases.
    Schmuck EM; Board PG; Whitbread AK; Tetlow N; Cavanaugh JA; Blackburn AC; Masoumi A
    Pharmacogenet Genomics; 2005 Jul; 15(7):493-501. PubMed ID: 15970797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for featuring of steroid isomerase activity in alpha class glutathione transferases.
    Tars K; Olin B; Mannervik B
    J Mol Biol; 2010 Mar; 397(1):332-40. PubMed ID: 20083122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Refined crystal structure of porcine class Pi glutathione S-transferase (pGST P1-1) at 2.1 A resolution.
    Dirr H; Reinemer P; Huber R
    J Mol Biol; 1994 Oct; 243(1):72-92. PubMed ID: 7932743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallographic and functional characterization of the fluorodifen-inducible glutathione transferase from Glycine max reveals an active site topography suited for diphenylether herbicides and a novel L-site.
    Axarli I; Dhavala P; Papageorgiou AC; Labrou NE
    J Mol Biol; 2009 Jan; 385(3):984-1002. PubMed ID: 19014949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structures and kinetic studies of human Kappa class glutathione transferase provide insights into the catalytic mechanism.
    Wang B; Peng Y; Zhang T; Ding J
    Biochem J; 2011 Oct; 439(2):215-25. PubMed ID: 21728995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The catalytic mechanism of the glutathione-dependent dehydroascorbate reductase activity of thioltransferase (glutaredoxin).
    Washburn MP; Wells WW
    Biochemistry; 1999 Jan; 38(1):268-74. PubMed ID: 9890907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural modelling and molecular characterization of omega-class glutathione S-transferase 2 from Drosophila melanogaster.
    Kim K; Yim J
    Insect Mol Biol; 2014 Jun; 23(3):357-66. PubMed ID: 24533905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of a zeta class glutathione S-transferase from Arabidopsis thaliana: characterisation of a GST with novel active-site architecture and a putative role in tyrosine catabolism.
    Thom R; Dixon DP; Edwards R; Cole DJ; Lapthorn AJ
    J Mol Biol; 2001 May; 308(5):949-62. PubMed ID: 11352584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures of thermolabile mutants of human glutathione transferase P1-1.
    Rossjohn J; McKinstry WJ; Oakley AJ; Parker MW; Stenberg G; Mannervik B; Dragani B; Cocco R; Aceto A
    J Mol Biol; 2000 Sep; 302(2):295-302. PubMed ID: 10970734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The omega-class glutathione transferases: structure, function, and genetics.
    Board PG
    Drug Metab Rev; 2011 May; 43(2):226-35. PubMed ID: 21495794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure, function and disease relevance of Omega-class glutathione transferases.
    Board PG; Menon D
    Arch Toxicol; 2016 May; 90(5):1049-67. PubMed ID: 26993125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel evolutionary pathways for glutathione transferases: structure and mechanism of the mitochondrial class kappa enzyme rGSTK1-1.
    Ladner JE; Parsons JF; Rife CL; Gilliland GL; Armstrong RN
    Biochemistry; 2004 Jan; 43(2):352-61. PubMed ID: 14717589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.