These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 22522257)

  • 21. Designed Two- and Three-Dimensional Protein Nanocage Networks Driven by Hydrophobic Interactions Contributed by Amyloidogenic Motifs.
    Zheng B; Zhou K; Zhang T; Lv C; Zhao G
    Nano Lett; 2019 Jun; 19(6):4023-4028. PubMed ID: 31099248
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-assembly of repeat proteins: Concepts and design of new interfaces.
    Sanchez-deAlcazar D; Mejias SH; Erazo K; Sot B; Cortajarena AL
    J Struct Biol; 2018 Feb; 201(2):118-129. PubMed ID: 28890161
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Designed, Helical Protein Nanotubes with Variable Diameters from a Single Building Block.
    Brodin JD; Smith SJ; Carr JR; Tezcan FA
    J Am Chem Soc; 2015 Aug; 137(33):10468-71. PubMed ID: 26256820
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and Construction of Functional Supramolecular Metalloprotein Assemblies.
    Churchfield LA; Tezcan FA
    Acc Chem Res; 2019 Feb; 52(2):345-355. PubMed ID: 30698941
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On-Axis Alignment of Protein Nanocage Assemblies from 2D to 3D through the Aromatic Stacking Interactions of Amino Acid Residues.
    Zhou K; Zang J; Chen H; Wang W; Wang H; Zhao G
    ACS Nano; 2018 Nov; 12(11):11323-11332. PubMed ID: 30265511
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein crystalline frameworks with controllable interpenetration directed by dual supramolecular interactions.
    Sakai F; Yang G; Weiss MS; Liu Y; Chen G; Jiang M
    Nat Commun; 2014 Aug; 5():4634. PubMed ID: 25144207
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Programming Amphiphilic Peptoid Oligomers for Hierarchical Assembly and Inorganic Crystallization.
    Cai B; Li Z; Chen CL
    Acc Chem Res; 2021 Jan; 54(1):81-91. PubMed ID: 33136361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Can the propensity of protein crystallization be increased by using systematic screening with metals?
    Hegde RP; Pavithra GC; Dey D; Almo SC; Ramakumar S; Ramagopal UA
    Protein Sci; 2017 Sep; 26(9):1704-1713. PubMed ID: 28643473
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA-guided crystallization of colloidal nanoparticles.
    Nykypanchuk D; Maye MM; van der Lelie D; Gang O
    Nature; 2008 Jan; 451(7178):549-52. PubMed ID: 18235496
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Noncovalent Self-Assembly of Protein Crystals with Tunable Structures.
    Du M; Zhou K; Yu R; Zhai Y; Chen G; Wang Q
    Nano Lett; 2021 Feb; 21(4):1749-1757. PubMed ID: 33556245
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Metal Organic Framework with Spherical Protein Nodes: Rational Chemical Design of 3D Protein Crystals.
    Sontz PA; Bailey JB; Ahn S; Tezcan FA
    J Am Chem Soc; 2015 Sep; 137(36):11598-601. PubMed ID: 26305584
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering the entropy-driven free-energy landscape of a dynamic nanoporous protein assembly.
    Alberstein R; Suzuki Y; Paesani F; Tezcan FA
    Nat Chem; 2018 Jul; 10(7):732-739. PubMed ID: 29713036
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of a confined environment using protein cages and crystals for the development of biohybrid materials.
    Abe S; Maity B; Ueno T
    Chem Commun (Camb); 2016 May; 52(39):6496-512. PubMed ID: 27032539
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering the structure and magnetic properties of crystalline solids via the metal-directed self-assembly of a versatile molecular building unit.
    Noveron JC; Lah MS; Del Sesto RE; Arif AM; Miller JS; Stang PJ
    J Am Chem Soc; 2002 Jun; 124(23):6613-25. PubMed ID: 12047182
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rational design of a hexameric protein assembly stabilized by metal chelation.
    Alcala-Torano R; Walther M; Sommer DJ; Park CK; Ghirlanda G
    Biopolymers; 2018 Aug; 109(10):e23233. PubMed ID: 30191549
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design of biologically active binary protein 2D materials.
    Ben-Sasson AJ; Watson JL; Sheffler W; Johnson MC; Bittleston A; Somasundaram L; Decarreau J; Jiao F; Chen J; Mela I; Drabek AA; Jarrett SM; Blacklow SC; Kaminski CF; Hura GL; De Yoreo JJ; Kollman JM; Ruohola-Baker H; Derivery E; Baker D
    Nature; 2021 Jan; 589(7842):468-473. PubMed ID: 33408408
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures.
    Kang K; Lee KH; Han Y; Gao H; Xie S; Muller DA; Park J
    Nature; 2017 Oct; 550(7675):229-233. PubMed ID: 28953885
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Device-quality, reconfigurable metamaterials from shape-directed nanocrystal assembly.
    Zhou W; Liu Z; Huang Z; Lin H; Samanta D; Lin QY; Aydin K; Mirkin CA
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21052-21057. PubMed ID: 32817562
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diverse protein assembly driven by metal and chelating amino acids with selectivity and tunability.
    Yang M; Song WJ
    Nat Commun; 2019 Dec; 10(1):5545. PubMed ID: 31804480
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Principles of molecular assemblies leading to molecular nanostructures.
    Mali KS; De Feyter S
    Philos Trans A Math Phys Eng Sci; 2013 Oct; 371(2000):20120304. PubMed ID: 24000356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.