These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 22522258)

  • 1. Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures.
    Hull JF; Himeda Y; Wang WH; Hashiguchi B; Periana R; Szalda DJ; Muckerman JT; Fujita E
    Nat Chem; 2012 Mar; 4(5):383-8. PubMed ID: 22522258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Hydrogen Storage and Production Using a Catalyst with an Imidazoline-Based, Proton-Responsive Ligand.
    Wang L; Onishi N; Murata K; Hirose T; Muckerman JT; Fujita E; Himeda Y
    ChemSusChem; 2017 Mar; 10(6):1071-1075. PubMed ID: 27860395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interconversion of CO2 and formic acid by bio-inspired Ir complexes with pendent bases.
    Fujita E; Muckerman JT; Himeda Y
    Biochim Biophys Acta; 2013; 1827(8-9):1031-8. PubMed ID: 23174332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen storage and delivery: the carbon dioxide - formic acid couple.
    Laurenczy G
    Chimia (Aarau); 2011; 65(9):663-6. PubMed ID: 22026175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen storage and evolution catalysed by metal hydride complexes.
    Fukuzumi S; Suenobu T
    Dalton Trans; 2013 Jan; 42(1):18-28. PubMed ID: 23080061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recyclable catalyst for conversion of carbon dioxide into formate attributable to an oxyanion on the catalyst ligand.
    Himeda Y; Onozawa-Komatsuzaki N; Sugihara H; Kasuga K
    J Am Chem Soc; 2005 Sep; 127(38):13118-9. PubMed ID: 16173719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an Iridium-Based Catalyst for High-Pressure Evolution of Hydrogen from Formic Acid.
    Iguchi M; Himeda Y; Manaka Y; Kawanami H
    ChemSusChem; 2016 Oct; 9(19):2749-2753. PubMed ID: 27530918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iridium Complexes with Proton-Responsive Azole-Type Ligands as Effective Catalysts for CO
    Suna Y; Himeda Y; Fujita E; Muckerman JT; Ertem MZ
    ChemSusChem; 2017 Nov; 10(22):4535-4543. PubMed ID: 28985455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amine-free reversible hydrogen storage in formate salts catalyzed by ruthenium pincer complex without pH control or solvent change.
    Kothandaraman J; Czaun M; Goeppert A; Haiges R; Jones JP; May RB; Prakash GK; Olah GA
    ChemSusChem; 2015 Apr; 8(8):1442-51. PubMed ID: 25824142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CO2 capture and conversion with a multifunctional polyethyleneimine-tethered iminophosphine iridium catalyst/adsorbent.
    McNamara ND; Hicks JC
    ChemSusChem; 2014 Apr; 7(4):1114-24. PubMed ID: 24591345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-Ligand Cooperation in Cp*Ir-Pyridylpyrrole Complexes: Rational Design and Catalytic Activity in Formic Acid Dehydrogenation and CO
    Mo XF; Liu C; Chen ZW; Ma F; He P; Yi XY
    Inorg Chem; 2021 Nov; 60(21):16584-16592. PubMed ID: 34637291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral-at-Metal: Iridium(III) Tetrazole Complexes With Proton-Responsive P-OH Groups for CO
    Ocansey E; Darkwa J; Makhubela BCE
    Front Chem; 2020; 8():591353. PubMed ID: 33304883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon Dioxide to Methanol: The Aqueous Catalytic Way at Room Temperature.
    Sordakis K; Tsurusaki A; Iguchi M; Kawanami H; Himeda Y; Laurenczy G
    Chemistry; 2016 Oct; 22(44):15605-15608. PubMed ID: 27582027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen Production from a Methanol-Water Solution Catalyzed by an Anionic Iridium Complex Bearing a Functional Bipyridonate Ligand under Weakly Basic Conditions.
    Fujita K; Kawahara R; Aikawa T; Yamaguchi R
    Angew Chem Int Ed Engl; 2015 Jul; 54(31):9057-60. PubMed ID: 26083123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Highly Efficient Heterogenized Iridium Complex for the Catalytic Hydrogenation of Carbon Dioxide to Formate.
    Park K; Gunasekar GH; Prakash N; Jung KD; Yoon S
    ChemSusChem; 2015 Oct; 8(20):3410-3. PubMed ID: 26493515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water-Soluble Iridium-NHC-Phosphine Complexes as Catalysts for Chemical Hydrogen Batteries Based on Formate.
    Horváth H; Papp G; Szabolcsi R; Kathó Á; Joó F
    ChemSusChem; 2015 Sep; 8(18):3036-8. PubMed ID: 26289830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A prolific catalyst for dehydrogenation of neat formic acid.
    Celaje JJ; Lu Z; Kedzie EA; Terrile NJ; Lo JN; Williams TJ
    Nat Commun; 2016 Apr; 7():11308. PubMed ID: 27076111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formate-Bicarbonate Cycle as a Vehicle for Hydrogen and Energy Storage.
    Bahuguna A; Sasson Y
    ChemSusChem; 2021 Mar; 14(5):1258-1283. PubMed ID: 33231357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visible-light photoredox catalysis: selective reduction of carbon dioxide to carbon monoxide by a nickel N-heterocyclic carbene-isoquinoline complex.
    Thoi VS; Kornienko N; Margarit CG; Yang P; Chang CJ
    J Am Chem Soc; 2013 Sep; 135(38):14413-24. PubMed ID: 24033186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trimetallic supported catalyst for renewable source of energy and environmental control through CO2 conversion.
    Hussain ST; Mazhar M; Hasib-ur-Rahman M; Bari M
    Environ Technol; 2009 May; 30(6):543-59. PubMed ID: 19603702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.