BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 22522263)

  • 21. Cobalt-phosphate oxygen-evolving compound.
    Kanan MW; Surendranath Y; Nocera DG
    Chem Soc Rev; 2009 Jan; 38(1):109-14. PubMed ID: 19088970
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Across the board: Hiroshi Imahori.
    Imahori H
    ChemSusChem; 2015 Feb; 8(3):426-7. PubMed ID: 25581501
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Water oxidation catalysis: influence of anionic ligands upon the redox properties and catalytic performance of mononuclear ruthenium complexes.
    Tong L; Wang Y; Duan L; Xu Y; Cheng X; Fischer A; Ahlquist MS; Sun L
    Inorg Chem; 2012 Mar; 51(6):3388-98. PubMed ID: 22360662
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Co(II)-Ru(II) dyad relevant to light-driven water oxidation catalysis.
    López AM; Natali M; Pizzolato E; Chiorboli C; Bonchio M; Sartorel A; Scandola F
    Phys Chem Chem Phys; 2014 Jun; 16(24):12000-7. PubMed ID: 24664104
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical and photochemical water oxidation catalyzed by mononuclear ruthenium complexes with a negatively charged tridentate ligand.
    Duan L; Xu Y; Gorlov M; Tong L; Andersson S; Sun L
    Chemistry; 2010 Apr; 16(15):4659-68. PubMed ID: 20229528
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wiring of Photosystem II to Hydrogenase for Photoelectrochemical Water Splitting.
    Mersch D; Lee CY; Zhang JZ; Brinkert K; Fontecilla-Camps JC; Rutherford AW; Reisner E
    J Am Chem Soc; 2015 Jul; 137(26):8541-9. PubMed ID: 26046591
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxygen Evolution Catalyzed by a Mononuclear Ruthenium Complex Bearing Pendant SO3(-) Groups.
    Yoshida M; Kondo M; Torii S; Sakai K; Masaoka S
    Angew Chem Int Ed Engl; 2015 Jun; 54(27):7981-4. PubMed ID: 26015223
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photosystem II like water oxidation mechanism in a bioinspired tetranuclear manganese complex.
    Liao RZ; Kärkäs MD; Lee BL; Åkermark B; Siegbahn PE
    Inorg Chem; 2015 Jan; 54(1):342-51. PubMed ID: 25486382
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxygen evolution at functionalized carbon surfaces: a strategy for immobilization of molecular water oxidation catalysts.
    Tong L; Göthelid M; Sun L
    Chem Commun (Camb); 2012 Oct; 48(80):10025-7. PubMed ID: 22945420
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immobilization of a Molecular Ruthenium Catalyst on Hematite Nanorod Arrays for Water Oxidation with Stable Photocurrent.
    Fan K; Li F; Wang L; Daniel Q; Chen H; Gabrielsson E; Sun J; Sun L
    ChemSusChem; 2015 Oct; 8(19):3242-7. PubMed ID: 26315677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sulfur Coordination Effects on the Stability and Activity of a Ruthenium-Based Water Oxidation Catalyst.
    Yang J; An J; Tong L; Long B; Fan T; Duan L
    Inorg Chem; 2019 Mar; 58(5):3137-3144. PubMed ID: 30785733
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic mechanism of water oxidation with single-site ruthenium-heteropolytungstate complexes.
    Murakami M; Hong D; Suenobu T; Yamaguchi S; Ogura T; Fukuzumi S
    J Am Chem Soc; 2011 Aug; 133(30):11605-13. PubMed ID: 21702460
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chloride-assisted catalytic water oxidation.
    Chen Z; Concepcion JJ; Song N; Meyer TJ
    Chem Commun (Camb); 2014 Jul; 50(59):8053-6. PubMed ID: 24924315
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PSII as an in vivo molecular catalyst for the production of energy rich hydroquinones - A new approach in renewable energy.
    Das S; Maiti SK
    J Photochem Photobiol B; 2018 Mar; 180():134-139. PubMed ID: 29413696
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrogen storage and delivery: the carbon dioxide - formic acid couple.
    Laurenczy G
    Chimia (Aarau); 2011; 65(9):663-6. PubMed ID: 22026175
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Redox mediator effect on water oxidation in a ruthenium-based chromophore-catalyst assembly.
    Norris MR; Concepcion JJ; Harrison DP; Binstead RA; Ashford DL; Fang Z; Templeton JL; Meyer TJ
    J Am Chem Soc; 2013 Feb; 135(6):2080-3. PubMed ID: 23336109
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mimicking the Key Functions of Photosystem II in Artificial Photosynthesis for Photoelectrocatalytic Water Splitting.
    Ye S; Ding C; Chen R; Fan F; Fu P; Yin H; Wang X; Wang Z; Du P; Li C
    J Am Chem Soc; 2018 Mar; 140(9):3250-3256. PubMed ID: 29338218
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new dinuclear ruthenium complex as an efficient water oxidation catalyst.
    Xu Y; Akermark T; Gyollai V; Zou D; Eriksson L; Duan L; Zhang R; Akermark B; Sun L
    Inorg Chem; 2009 Apr; 48(7):2717-9. PubMed ID: 19243152
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Catalytic four-electron oxidation of water by intramolecular coupling of the oxo ligands of a bis(ruthenium-bipyridine) complex.
    Wada T; Ohtsu H; Tanaka K
    Chemistry; 2012 Feb; 18(8):2374-81. PubMed ID: 22249993
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Theoretical study of catalytic mechanism for single-site water oxidation process.
    Lin X; Hu X; Concepcion JJ; Chen Z; Liu S; Meyer TJ; Yang W
    Proc Natl Acad Sci U S A; 2012 Sep; 109(39):15669-72. PubMed ID: 22615356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.