These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 22522530)
1. Mixing of non-Newtonian fluids in wavy serpentine microchannel using electrokinetically driven flow. Cho CC; Chen CL; Chen CK Electrophoresis; 2012 Mar; 33(5):743-50. PubMed ID: 22522530 [TBL] [Abstract][Full Text] [Related]
2. Electrokinetically-driven flow mixing in microchannels with wavy surface. Chen CK; Cho CC J Colloid Interface Sci; 2007 Aug; 312(2):470-80. PubMed ID: 17442332 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects. Yan D; Yang C; Miao J; Lam Y; Huang X Electrophoresis; 2009 Sep; 30(18):3144-52. PubMed ID: 19764063 [TBL] [Abstract][Full Text] [Related]
4. Numerical analysis of a rapid magnetic microfluidic mixer. Wen CY; Liang KP; Chen H; Fu LM Electrophoresis; 2011 Nov; 32(22):3268-76. PubMed ID: 22102500 [TBL] [Abstract][Full Text] [Related]
5. Modelling and simulation of the behaviour of a biofluid in a microchannel biochip separator. Xue X; Patel MK; Kersaudy-Kerhoas M; Bailey C; Desmulliez MP Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):549-60. PubMed ID: 21331958 [TBL] [Abstract][Full Text] [Related]
6. Application of electrokinetic instability flow for enhanced micromixing in cross-shaped microchannel. Huang MZ; Yang RJ; Tai CH; Tsai CH; Fu LM Biomed Microdevices; 2006 Dec; 8(4):309-15. PubMed ID: 17003961 [TBL] [Abstract][Full Text] [Related]
7. Mass transport in a porous microchannel for non-Newtonian fluid with electrokinetic effects. Mondal S; De S Electrophoresis; 2013 Mar; 34(5):668-73. PubMed ID: 23192435 [TBL] [Abstract][Full Text] [Related]
8. Chaotic mixing in microchannels via low frequency switching transverse electroosmotic flow generated on integrated microelectrodes. Song H; Cai Z; Noh HM; Bennett DJ Lab Chip; 2010 Mar; 10(6):734-40. PubMed ID: 20221561 [TBL] [Abstract][Full Text] [Related]
9. Analysis of electroosmotic flow of power-law fluids in a slit microchannel. Zhao C; Zholkovskij E; Masliyah JH; Yang C J Colloid Interface Sci; 2008 Oct; 326(2):503-10. PubMed ID: 18656891 [TBL] [Abstract][Full Text] [Related]
10. Nonlinear Smoluchowski velocity for electroosmosis of Power-law fluids over a surface with arbitrary zeta potentials. Zhao C; Yang C Electrophoresis; 2010 Mar; 31(5):973-9. PubMed ID: 20191559 [TBL] [Abstract][Full Text] [Related]
11. Numerical study of the impact of non-Newtonian blood behavior on flow over a two-dimensional backward facing step. Choi HW; Barakat AI Biorheology; 2005; 42(6):493-509. PubMed ID: 16369086 [TBL] [Abstract][Full Text] [Related]
12. Electroosmotic flows of non-Newtonian power-law fluids in a cylindrical microchannel. Zhao C; Yang C Electrophoresis; 2013 Mar; 34(5):662-7. PubMed ID: 23229874 [TBL] [Abstract][Full Text] [Related]
13. Non-Newtonian flow effects on the coalescence and mixing of initially stationary droplets of shear-thinning fluids. Sun K; Wang T; Zhang P; Law CK Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023009. PubMed ID: 25768599 [TBL] [Abstract][Full Text] [Related]
14. Mesoscale hydrodynamic modeling of a colloid in shear-thinning viscoelastic fluids under shear flow. Ji S; Jiang R; Winkler RG; Gompper G J Chem Phys; 2011 Oct; 135(13):134116. PubMed ID: 21992291 [TBL] [Abstract][Full Text] [Related]
15. Rotating electroosmotic flow of power-law fluid through polyelectrolyte grafted microchannel. Patel M; Harish Kruthiventi SS; Kaushik P Colloids Surf B Biointerfaces; 2020 Sep; 193():111058. PubMed ID: 32408258 [TBL] [Abstract][Full Text] [Related]
16. Negative dielectrophoresis-based particle separation by size in a serpentine microchannel. Church C; Zhu J; Xuan X Electrophoresis; 2011 Feb; 32(5):527-31. PubMed ID: 21290386 [TBL] [Abstract][Full Text] [Related]
17. CFD simulation of non-Newtonian fluid flow in anaerobic digesters. Wu B; Chen S Biotechnol Bioeng; 2008 Feb; 99(3):700-11. PubMed ID: 17705227 [TBL] [Abstract][Full Text] [Related]
18. Rheological effects of blood in a nonplanar distal end-to-side anastomosis. Wang QQ; Ping BH; Xu QB; Wang W J Biomech Eng; 2008 Oct; 130(5):051009. PubMed ID: 19045516 [TBL] [Abstract][Full Text] [Related]
19. Electroosmotic flow of non-Newtonian fluids in a constriction microchannel. Ko CH; Li D; Malekanfard A; Wang YN; Fu LM; Xuan X Electrophoresis; 2019 May; 40(10):1387-1394. PubMed ID: 30346029 [TBL] [Abstract][Full Text] [Related]
20. Accurate prediction of wall shear stress in a stented artery: newtonian versus non-newtonian models. Mejia J; Mongrain R; Bertrand OF J Biomech Eng; 2011 Jul; 133(7):074501. PubMed ID: 21823750 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]