These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 22522535)
1. A microfluidic device for separating erythrocytes polluted by lead (II) from a continuous bloodstream flow. Wang MW Electrophoresis; 2012 Mar; 33(5):780-7. PubMed ID: 22522535 [TBL] [Abstract][Full Text] [Related]
2. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906 [TBL] [Abstract][Full Text] [Related]
3. Automatic microfluidic platform for cell separation and nucleus collection. Tai CH; Hsiung SK; Chen CY; Tsai ML; Lee GB Biomed Microdevices; 2007 Aug; 9(4):533-43. PubMed ID: 17508288 [TBL] [Abstract][Full Text] [Related]
4. A new design for efficient dielectrophoretic separation of cells in a microdevice. Jubery TZ; Dutta P Electrophoresis; 2013 Mar; 34(5):643-50. PubMed ID: 23255020 [TBL] [Abstract][Full Text] [Related]
5. Analytical solutions and validation of electric field and dielectrophoretic force in a bio-microfluidic channel. Nerguizian V; Alazzam A; Roman D; Stiharu I; Burnier M Electrophoresis; 2012 Feb; 33(3):426-35. PubMed ID: 22287173 [TBL] [Abstract][Full Text] [Related]
7. Continuous flow microfluidic device for cell separation, cell lysis and DNA purification. Chen X; Cui D; Liu C; Li H; Chen J Anal Chim Acta; 2007 Feb; 584(2):237-43. PubMed ID: 17386610 [TBL] [Abstract][Full Text] [Related]
8. DC-Dielectrophoretic separation of biological cells by size. Kang Y; Li D; Kalams SA; Eid JE Biomed Microdevices; 2008 Apr; 10(2):243-9. PubMed ID: 17899384 [TBL] [Abstract][Full Text] [Related]
9. Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium. Han KH; Frazier AB Lab Chip; 2008 Jul; 8(7):1079-86. PubMed ID: 18584082 [TBL] [Abstract][Full Text] [Related]
10. A microfluidic device for continuous white blood cell separation and lysis from whole blood. Kim M; Mo Jung S; Lee KH; Jun Kang Y; Yang S Artif Organs; 2010 Nov; 34(11):996-1002. PubMed ID: 21092042 [TBL] [Abstract][Full Text] [Related]
11. Continuous separation of cells by balanced dielectrophoretic forces at multiple frequencies. Braschler T; Demierre N; Nascimento E; Silva T; Oliva AG; Renaud P Lab Chip; 2008 Feb; 8(2):280-6. PubMed ID: 18231667 [TBL] [Abstract][Full Text] [Related]
13. A dielectrophoretic continuous flow sorter using integrated microelectrodes coupled to a channel constriction. Salomon S; Leichlé T; Nicu L Electrophoresis; 2011 Jun; 32(12):1508-14. PubMed ID: 21563186 [TBL] [Abstract][Full Text] [Related]
14. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Moon HS; Kwon K; Kim SI; Han H; Sohn J; Lee S; Jung HI Lab Chip; 2011 Mar; 11(6):1118-25. PubMed ID: 21298159 [TBL] [Abstract][Full Text] [Related]
16. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes. Lewpiriyawong N; Yang C; Lam YC Electrophoresis; 2010 Aug; 31(15):2622-31. PubMed ID: 20665920 [TBL] [Abstract][Full Text] [Related]
17. Separation of white blood cells from erythrocytes on a dielectrophoresis (DEP) based 'Lab-on-a-chip' device. Borgatti M; Altomare L; Baruffa M; Fabbri E; Breveglieri G; Feriotto G; Manaresi N; Medoro G; Romani A; Tartagni M; Gambari R; Guerrieri R Int J Mol Med; 2005 Jun; 15(6):913-20. PubMed ID: 15870893 [TBL] [Abstract][Full Text] [Related]
18. Gravitational sedimentation induced blood delamination for continuous plasma separation on a microfluidics chip. Zhang XB; Wu ZQ; Wang K; Zhu J; Xu JJ; Xia XH; Chen HY Anal Chem; 2012 Apr; 84(8):3780-6. PubMed ID: 22449121 [TBL] [Abstract][Full Text] [Related]
19. Separation of model mixtures of epsilon-globin positive fetal nucleated red blood cells and anucleate erythrocytes using a microfluidic device. Lee D; Sukumar P; Mahyuddin A; Choolani M; Xu G J Chromatogr A; 2010 Mar; 1217(11):1862-6. PubMed ID: 20144459 [TBL] [Abstract][Full Text] [Related]
20. Modeling and development of a low frequency contactless dielectrophoresis (cDEP) platform to sort cancer cells from dilute whole blood samples. Sano MB; Caldwell JL; Davalos RV Biosens Bioelectron; 2011 Dec; 30(1):13-20. PubMed ID: 21944186 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]