BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 22522601)

  • 1. Many pathways in laboratory evolution can lead to improved enzymes: how to escape from local minima.
    Gumulya Y; Sanchis J; Reetz MT
    Chembiochem; 2012 May; 13(7):1060-6. PubMed ID: 22522601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing the thermal robustness of an enzyme by directed evolution: least favorable starting points and inferior mutants can map superior evolutionary pathways.
    Gumulya Y; Reetz MT
    Chembiochem; 2011 Nov; 12(16):2502-10. PubMed ID: 21913300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iterative saturation mutagenesis accelerates laboratory evolution of enzyme stereoselectivity: rigorous comparison with traditional methods.
    Reetz MT; Prasad S; Carballeira JD; Gumulya Y; Bocola M
    J Am Chem Soc; 2010 Jul; 132(26):9144-52. PubMed ID: 20536132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Addressing the numbers problem in directed evolution.
    Reetz MT; Kahakeaw D; Lohmer R
    Chembiochem; 2008 Jul; 9(11):1797-804. PubMed ID: 18567049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iterative saturation mutagenesis: a powerful approach to engineer proteins by systematically simulating Darwinian evolution.
    Acevedo-Rocha CG; Hoebenreich S; Reetz MT
    Methods Mol Biol; 2014; 1179():103-28. PubMed ID: 25055773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shedding light on the efficacy of laboratory evolution based on iterative saturation mutagenesis.
    Reetz MT; Kahakeaw D; Sanchis J
    Mol Biosyst; 2009 Feb; 5(2):115-22. PubMed ID: 19156255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the efficiency of directed evolution in focused enzyme libraries by the adaptive substituent reordering algorithm.
    Feng X; Sanchis J; Reetz MT; Rabitz H
    Chemistry; 2012 Apr; 18(18):5646-54. PubMed ID: 22434591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulating the stereoselectivity of limonene epoxide hydrolase by directed evolution based on iterative saturation mutagenesis.
    Zheng H; Reetz MT
    J Am Chem Soc; 2010 Nov; 132(44):15744-51. PubMed ID: 20958062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes.
    Reetz MT; Carballeira JD
    Nat Protoc; 2007; 2(4):891-903. PubMed ID: 17446890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manipulating the expression rate and enantioselectivity of an epoxide hydrolase by using directed evolution.
    Reetz MT; Zheng H
    Chembiochem; 2011 Jul; 12(10):1529-35. PubMed ID: 21567703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling the selectivity and stability of proteins by new strategies in directed evolution: the case of organocatalytic enzymes.
    Reetz MT
    Ernst Schering Found Symp Proc; 2007; (2):321-40. PubMed ID: 18642531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Concepts for Increasing the Efficiency in Directed Evolution of Stereoselective Enzymes.
    Sun Z; Wikmark Y; Bäckvall JE; Reetz MT
    Chemistry; 2016 Apr; 22(15):5046-54. PubMed ID: 26914401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme engineering for enantioselectivity: from trial-and-error to rational design?
    Otten LG; Hollmann F; Arends IW
    Trends Biotechnol; 2010 Jan; 28(1):46-54. PubMed ID: 19913316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrahigh-throughput FACS-based screening for directed enzyme evolution.
    Yang G; Withers SG
    Chembiochem; 2009 Nov; 10(17):2704-15. PubMed ID: 19780076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategy and success for the directed evolution of enzymes.
    Dalby PA
    Curr Opin Struct Biol; 2011 Aug; 21(4):473-80. PubMed ID: 21684150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constructing and analyzing the fitness landscape of an experimental evolutionary process.
    Reetz MT; Sanchis J
    Chembiochem; 2008 Sep; 9(14):2260-7. PubMed ID: 18712749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revisiting the lipase from Pseudomonas aeruginosa: directed evolution of substrate acceptance and enantioselectivity using iterative saturation mutagenesis.
    Prasad S; Bocola M; Reetz MT
    Chemphyschem; 2011 Jun; 12(8):1550-7. PubMed ID: 21472964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laboratory evolution of stereoselective enzymes: a prolific source of catalysts for asymmetric reactions.
    Reetz MT
    Angew Chem Int Ed Engl; 2011 Jan; 50(1):138-74. PubMed ID: 20715024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directed evolution of enzymes for applied biocatalysis.
    Turner NJ
    Trends Biotechnol; 2003 Nov; 21(11):474-8. PubMed ID: 14573359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directed evolution by using iterative saturation mutagenesis based on multiresidue sites.
    Parra LP; Agudo R; Reetz MT
    Chembiochem; 2013 Nov; 14(17):2301-9. PubMed ID: 24136881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.