BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 22522656)

  • 1. An image analysis toolbox for high-throughput C. elegans assays.
    Wählby C; Kamentsky L; Liu ZH; Riklin-Raviv T; Conery AL; O'Rourke EJ; Sokolnicki KL; Visvikis O; Ljosa V; Irazoqui JE; Golland P; Ruvkun G; Ausubel FM; Carpenter AE
    Nat Methods; 2012 Apr; 9(7):714-6. PubMed ID: 22522656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated Processing of Imaging Data through Multi-tiered Classification of Biological Structures Illustrated Using Caenorhabditis elegans.
    Zhan M; Crane MM; Entchev EV; Caballero A; Fernandes de Abreu DA; Ch'ng Q; Lu H
    PLoS Comput Biol; 2015 Apr; 11(4):e1004194. PubMed ID: 25910032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphology-guided graph search for untangling objects: C. elegans analysis.
    Raviv TR; Ljosa V; Conery AL; Ausubel FM; Carpenter AE; Golland P; Wählby C
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):634-41. PubMed ID: 20879454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Workflow and metrics for image quality control in large-scale high-content screens.
    Bray MA; Fraser AN; Hasaka TP; Carpenter AE
    J Biomol Screen; 2012 Feb; 17(2):266-74. PubMed ID: 21956170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Worm-align and Worm_CP, Two Open-Source Pipelines for Straightening and Quantification of Fluorescence Image Data Obtained from Caenorhabditis elegans.
    Okkenhaug H; Chauve L; Masoudzadeh F; Okkenhaug L; Casanueva O
    J Vis Exp; 2020 May; (159):. PubMed ID: 32538914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated Detection of Autophagy Response Using Single Cell-Based Microscopy Assays.
    Mueller AJ; Proikas-Cezanne T
    Methods Mol Biol; 2019; 1880():429-445. PubMed ID: 30610713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence-Based High-Throughput and Targeted Image Acquisition and Analysis for Phenotypic Screening.
    Gunkel M; Eberle JP; Erfle H
    Methods Mol Biol; 2017; 1563():269-280. PubMed ID: 28324614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DetecTiff: a novel image analysis routine for high-content screening microscopy.
    Gilbert DF; Meinhof T; Pepperkok R; Runz H
    J Biomol Screen; 2009 Sep; 14(8):944-55. PubMed ID: 19641223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Straightening Caenorhabditis elegans images.
    Peng H; Long F; Liu X; Kim SK; Myers EW
    Bioinformatics; 2008 Jan; 24(2):234-42. PubMed ID: 18025002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-content screening: imaging, analysis, and implementation.
    McGee J
    J Biomol Screen; 2012 Feb; 17(2):275-7. PubMed ID: 22282877
    [No Abstract]   [Full Text] [Related]  

  • 11. Virtual-freezing fluorescence imaging flow cytometry.
    Mikami H; Kawaguchi M; Huang CJ; Matsumura H; Sugimura T; Huang K; Lei C; Ueno S; Miura T; Ito T; Nagasawa K; Maeno T; Watarai H; Yamagishi M; Uemura S; Ohnuki S; Ohya Y; Kurokawa H; Matsusaka S; Sun CW; Ozeki Y; Goda K
    Nat Commun; 2020 Mar; 11(1):1162. PubMed ID: 32139684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. easyXpress: An R package to analyze and visualize high-throughput C. elegans microscopy data generated using CellProfiler.
    Nyaanga J; Crombie TA; Widmayer SJ; Andersen EC
    PLoS One; 2021; 16(8):e0252000. PubMed ID: 34383778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unsupervised modeling of cell morphology dynamics for time-lapse microscopy.
    Zhong Q; Busetto AG; Fededa JP; Buhmann JM; Gerlich DW
    Nat Methods; 2012 May; 9(7):711-3. PubMed ID: 22635062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated and customizable quantitative image analysis of whole Caenorhabditis elegans germlines.
    Toraason E; Adler VL; Kurhanewicz NA; DiNardo A; Saunders AM; Cahoon CK; Libuda DE
    Genetics; 2021 Mar; 217(3):. PubMed ID: 33772283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automating Aggregate Quantification in Caenorhabditis elegans.
    Vaziriyan-Sani AS; Handy RD; Walker AC; Pagolu CN; Enslow SM; Czyż DM
    J Vis Exp; 2021 Oct; (176):. PubMed ID: 34723951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Analysis of Experimental Methods to Quantify Animal Activity in Caenorhabditis elegans Models of Mitochondrial Disease.
    Lavorato M; Mathew ND; Shah N; Nakamaru-Ogiso E; Falk MJ
    J Vis Exp; 2021 Apr; (170):. PubMed ID: 33871460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high-throughput microplate toxicity screening platform based on Caenorhabditis elegans.
    Wu J; Gao Y; Xi J; You X; Zhang X; Zhang X; Cao Y; Liu P; Chen X; Luan Y
    Ecotoxicol Environ Saf; 2022 Oct; 245():114089. PubMed ID: 36126550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous-flow C. elegans fluorescence expression analysis with real-time image processing through microfluidics.
    Yan Y; Boey D; Ng LT; Gruber J; Bettiol A; Thakor NV; Chen CH
    Biosens Bioelectron; 2016 Mar; 77():428-34. PubMed ID: 26452079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracking the swimming motions of C. elegans worms with applications in aging studies.
    Restif C; Metaxas D
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):35-42. PubMed ID: 18979729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic systems for high-throughput and high-content screening using the nematode Caenorhabditis elegans.
    Cornaglia M; Lehnert T; Gijs MAM
    Lab Chip; 2017 Nov; 17(22):3736-3759. PubMed ID: 28840220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.