These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 22522896)

  • 21. Motility, chemokinesis, and methylation-independent chemotaxis in Azospirillum brasilense.
    Zhulin IB; Armitage JP
    J Bacteriol; 1993 Feb; 175(4):952-8. PubMed ID: 8432718
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A hybrid two-component system protein from Azospirillum brasilense Sp7 was involved in chemotaxis.
    Cui Y; Tu R; Wu L; Hong Y; Chen S
    Microbiol Res; 2011 Sep; 166(6):458-67. PubMed ID: 20869221
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analyzing Chemotaxis and Related Behaviors of Azospirillum Brasilense.
    O'Neal L; Mukherjee T; Alexandre G
    Curr Protoc Microbiol; 2018 Feb; 48():3E.3.1-3E.3.11. PubMed ID: 29512118
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Different evolutionary constraints on chemotaxis proteins CheW and CheY revealed by heterologous expression studies and protein sequence analysis.
    Alexandre G; Zhulin IB
    J Bacteriol; 2003 Jan; 185(2):544-52. PubMed ID: 12511501
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Mutants of bacterium Azospirillum brasilense Sp245 with Omegon insertion in mmsB or fabG genes of lipid metabolism are defective in motility and flagellation].
    Kovtunov EA; Shelud'ko AV; Chernyshova MP; Petrova LP; Katsy EI
    Genetika; 2013 Nov; 49(11):1270-5. PubMed ID: 25470927
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In Azospirillum brasilense, mutations in flmA or flmB genes affect polar flagellum assembly, surface polysaccharides, and attachment to maize roots.
    Rossi FA; Medeot DB; Liaudat JP; Pistorio M; Jofré E
    Microbiol Res; 2016 Sep; 190():55-62. PubMed ID: 27393999
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Specific Root Exudate Compounds Sensed by Dedicated Chemoreceptors Shape Azospirillum brasilense Chemotaxis in the Rhizosphere.
    O'Neal L; Vo L; Alexandre G
    Appl Environ Microbiol; 2020 Jul; 86(15):. PubMed ID: 32471917
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling aerotaxis band formation in Azospirillum brasilense.
    Elmas M; Alexiades V; O'Neal L; Alexandre G
    BMC Microbiol; 2019 May; 19(1):101. PubMed ID: 31101077
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A mutant of Azospirillum brasilense Sp7 impaired in flocculation with a modified colonization pattern and superior nitrogen fixation in association with wheat.
    Katupitiya S; Millet J; Vesk M; Viccars L; Zeman A; Lidong Z; Elmerich C; Kennedy IR
    Appl Environ Microbiol; 1995 May; 61(5):1987-95. PubMed ID: 7646034
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmid gene for putative integral membrane protein affects formation of lipopolysaccharide and motility in Azospirillum brasilense Sp245.
    Petrova LP; Yevstigneyeva SS; Filip'echeva YA; Shelud'ko AV; Burygin GL; Katsy EI
    Folia Microbiol (Praha); 2020 Dec; 65(6):963-972. PubMed ID: 32607666
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nitrogenase switch-off by ammonium ions in Azospirillum brasilense requires the GlnB nitrogen signal-transducing protein.
    Klassen G; Souza EM; Yates MG; Rigo LU; Costa RM; Inaba J; Pedrosa FO
    Appl Environ Microbiol; 2005 Sep; 71(9):5637-41. PubMed ID: 16151168
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of chsA, a new gene controlling the chemotactic response in Azospirillum brasilense Sp7.
    Carreño-López R; Sánchez A; Camargo N; Elmerich C; Baca BE
    Arch Microbiol; 2009 Jun; 191(6):501-7. PubMed ID: 19390839
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carotenoid production and phenotypic variation in Azospirillum brasilense.
    Brenholtz GR; Tamir-Ariel D; Okon Y; Burdman S
    Res Microbiol; 2017 Jun; 168(5):493-501. PubMed ID: 28263905
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxygen taxis and proton motive force in Azospirillum brasilense.
    Zhulin IB; Bespalov VA; Johnson MS; Taylor BL
    J Bacteriol; 1996 Sep; 178(17):5199-204. PubMed ID: 8752338
    [TBL] [Abstract][Full Text] [Related]  

  • 35. cDNA-AFLP reveals differentially expressed genes related to cell aggregation of Azospirillum brasilense.
    Valverde A; Okon Y; Burdman S
    FEMS Microbiol Lett; 2006 Dec; 265(2):186-94. PubMed ID: 17147763
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in motility of the rhizobacterium Azospirillum brasilense in the presence of plant lectins.
    Schelud'ko AV; Makrushin KV; Tugarova AV; Krestinenko VA; Panasenko VI; Antonyuk LP; Katsy EI
    Microbiol Res; 2009; 164(2):149-56. PubMed ID: 17317126
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation of behavioral mutants of Azospirillum brasilense by using Tn5 lacZ.
    van Rhijn P; Vanstockem M; Vanderleyden J; De Mot R
    Appl Environ Microbiol; 1990 Apr; 56(4):990-6. PubMed ID: 2160221
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Azospirillum brasilense rpoN gene is involved in nitrogen fixation, nitrate assimilation, ammonium uptake, and flagellar biosynthesis.
    Milcamps A; Van Dommelen A; Stigter J; Vanderleyden J; de Bruijn FJ
    Can J Microbiol; 1996 May; 42(5):467-78. PubMed ID: 8640606
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The major chemotaxis gene cluster of Rhizobium leguminosarum bv. viciae is essential for competitive nodulation.
    Miller LD; Yost CK; Hynes MF; Alexandre G
    Mol Microbiol; 2007 Jan; 63(2):348-62. PubMed ID: 17163982
    [TBL] [Abstract][Full Text] [Related]  

  • 40. cDNA-AFLP analysis of differential gene expression related to cell chemotactic and encystment of Azospirillum brasilense.
    Li H; Cui Y; Wu L; Tu R; Chen S
    Microbiol Res; 2011 Dec; 166(8):595-605. PubMed ID: 21242066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.