BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 22523005)

  • 1. Minimizing data transfer with sustained performance in wireless brain-machine interfaces.
    Thorbergsson PT; Garwicz M; Schouenborg J; Johansson AJ
    J Neural Eng; 2012 Jun; 9(3):036005. PubMed ID: 22523005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of spike-detection algorithms for a brain-machine interface application.
    Obeid I; Wolf PD
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):905-11. PubMed ID: 15188857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential Monte Carlo point-process estimation of kinematics from neural spiking activity for brain-machine interfaces.
    Wang Y; Paiva AR; Príncipe JC; Sanchez JC
    Neural Comput; 2009 Oct; 21(10):2894-930. PubMed ID: 19548797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of neuronal spikes using an adaptive threshold based on the max-min spread sorting method.
    Chan HL; Lin MA; Wu T; Lee ST; Tsai YT; Chao PK
    J Neurosci Methods; 2008 Jul; 172(1):112-21. PubMed ID: 18508127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Technology-aware algorithm design for neural spike detection, feature extraction, and dimensionality reduction.
    Gibson S; Judy JW; Marković D
    IEEE Trans Neural Syst Rehabil Eng; 2010 Oct; 18(5):469-78. PubMed ID: 20525534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multiscale correlation of wavelet coefficients approach to spike detection.
    Yang C; Olson B; Si J
    Neural Comput; 2011 Jan; 23(1):215-50. PubMed ID: 20964544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A stationary wavelet transform and a time-frequency based spike detection algorithm for extracellular recorded data.
    Lieb F; Stark HG; Thielemann C
    J Neural Eng; 2017 Jun; 14(3):036013. PubMed ID: 28272020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved multi-unit decoding at the brain-machine interface using population temporal linear filtering.
    Herzfeld DJ; Beardsley SA
    J Neural Eng; 2010 Aug; 7(4):046012. PubMed ID: 20644245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defining brain-machine interface applications by matching interface performance with device requirements.
    Tonet O; Marinelli M; Citi L; Rossini PM; Rossini L; Megali G; Dario P
    J Neurosci Methods; 2008 Jan; 167(1):91-104. PubMed ID: 17499364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the phase code in an EEG during gripping-force tasks: a possible alternative approach to the development of the brain-computer interfaces.
    Logar V; Skrjanc I; Belic A; Brezan S; Koritnik B; Zidar J
    Artif Intell Med; 2008 Sep; 44(1):41-9. PubMed ID: 18657956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fuzzy logic-based spike sorting system.
    Balasubramanian K; Obeid I
    J Neurosci Methods; 2011 May; 198(1):125-34. PubMed ID: 21463653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superiority of nonlinear mapping in decoding multiple single-unit neuronal spike trains: a simulation study.
    Kim KH; Kim SS; Kim SJ
    J Neurosci Methods; 2006 Jan; 150(2):202-11. PubMed ID: 16099513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.
    Peikon ID; Fitzsimmons NA; Lebedev MA; Nicolelis MA
    J Neurosci Methods; 2009 Jun; 180(2):224-33. PubMed ID: 19464514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spike sorting with hidden Markov models.
    Herbst JA; Gammeter S; Ferrero D; Hahnloser RH
    J Neurosci Methods; 2008 Sep; 174(1):126-34. PubMed ID: 18619490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel automated spike sorting algorithm with adaptable feature extraction.
    Bestel R; Daus AW; Thielemann C
    J Neurosci Methods; 2012 Oct; 211(1):168-78. PubMed ID: 22951122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Instantaneous estimation of motor cortical neural encoding for online brain-machine interfaces.
    Wang Y; Principe JC
    J Neural Eng; 2010 Oct; 7(5):056010. PubMed ID: 20841635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic sorting for multi-neuronal activity recorded with tetrodes in the presence of overlapping spikes.
    Takahashi S; Anzai Y; Sakurai Y
    J Neurophysiol; 2003 Apr; 89(4):2245-58. PubMed ID: 12612049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Power feasibility of implantable digital spike sorting circuits for neural prosthetic systems.
    Zumsteg ZS; Kemere C; O'Driscoll S; Santhanam G; Ahmed RE; Shenoy KV; Meng TH
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):272-9. PubMed ID: 16200751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic spike sorting for extracellular electrophysiological recording using unsupervised single linkage clustering based on grey relational analysis.
    Lai HY; Chen YY; Lin SH; Lo YC; Tsang S; Chen SY; Zhao WT; Chao WH; Chang YC; Wu R; Shih YY; Tsai ST; Jaw FS
    J Neural Eng; 2011 Jun; 8(3):036003. PubMed ID: 21464520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spike library based simulator for extracellular single unit neuronal signals.
    Thorbergsson PT; Jorntell H; Bengtsson F; Garwicz M; Schouenborg J; Johansson A
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6998-7001. PubMed ID: 19964726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.