These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 22523083)

  • 1. DNA origami as biocompatible surface to match single-molecule and ensemble experiments.
    Gietl A; Holzmeister P; Grohmann D; Tinnefeld P
    Nucleic Acids Res; 2012 Aug; 40(14):e110. PubMed ID: 22523083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-molecule fluorescence resonance energy transfer shows uniformity in TATA binding protein-induced DNA bending and heterogeneity in bending kinetics.
    Blair RH; Goodrich JA; Kugel JF
    Biochemistry; 2012 Sep; 51(38):7444-55. PubMed ID: 22934924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy.
    Endo M; Sugiyama H
    Acc Chem Res; 2014 Jun; 47(6):1645-53. PubMed ID: 24601497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing DNA nanotechnology using single-molecule fluorescence.
    Tsukanov R; Tomov TE; Liber M; Berger Y; Nir E
    Acc Chem Res; 2014 Jun; 47(6):1789-98. PubMed ID: 24828396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular force spectroscopy with a DNA origami-based nanoscopic force clamp.
    Nickels PC; Wünsch B; Holzmeister P; Bae W; Kneer LM; Grohmann D; Tinnefeld P; Liedl T
    Science; 2016 Oct; 354(6310):305-307. PubMed ID: 27846560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA origami-based standards for quantitative fluorescence microscopy.
    Schmied JJ; Raab M; Forthmann C; Pibiri E; Wünsch B; Dammeyer T; Tinnefeld P
    Nat Protoc; 2014; 9(6):1367-91. PubMed ID: 24833175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A DNA origami-based device for investigating DNA bending proteins by transmission electron microscopy.
    Natarajan AK; Ryssy J; Kuzyk A
    Nanoscale; 2023 Feb; 15(7):3212-3218. PubMed ID: 36722916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distance Dependence of Single-Molecule Energy Transfer to Graphene Measured with DNA Origami Nanopositioners.
    Kaminska I; Bohlen J; Rocchetti S; Selbach F; Acuna GP; Tinnefeld P
    Nano Lett; 2019 Jul; 19(7):4257-4262. PubMed ID: 31251640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "DNA Origami Traffic Lights" with a Split Aptamer Sensor for a Bicolor Fluorescence Readout.
    Walter HK; Bauer J; Steinmeyer J; Kuzuya A; Niemeyer CM; Wagenknecht HA
    Nano Lett; 2017 Apr; 17(4):2467-2472. PubMed ID: 28249387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical Voltage Sensing Using DNA Origami.
    Hemmig EA; Fitzgerald C; Maffeo C; Hecker L; Ochmann SE; Aksimentiev A; Tinnefeld P; Keyser UF
    Nano Lett; 2018 Mar; 18(3):1962-1971. PubMed ID: 29430924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties of DNA origami nanoassemblies are determined by Holliday junction mechanophores.
    Shrestha P; Emura T; Koirala D; Cui Y; Hidaka K; Maximuck WJ; Endo M; Sugiyama H; Mao H
    Nucleic Acids Res; 2016 Aug; 44(14):6574-82. PubMed ID: 27387283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TFIIA changes the conformation of the DNA in TBP/TATA complexes and increases their kinetic stability.
    Hieb AR; Halsey WA; Betterton MD; Perkins TT; Kugel JF; Goodrich JA
    J Mol Biol; 2007 Sep; 372(3):619-32. PubMed ID: 17681538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bench-Top Fabrication of Single-Molecule Nanoarrays by DNA Origami Placement.
    Shetty RM; Brady SR; Rothemund PWK; Hariadi RF; Gopinath A
    ACS Nano; 2021 Jul; 15(7):11441-11450. PubMed ID: 34228915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coarse-grained modelling of the structural properties of DNA origami.
    Snodin BEK; Schreck JS; Romano F; Louis AA; Doye JPK
    Nucleic Acids Res; 2019 Feb; 47(3):1585-1597. PubMed ID: 30605514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-molecule chemical reactions on DNA origami.
    Voigt NV; Tørring T; Rotaru A; Jacobsen MF; Ravnsbaek JB; Subramani R; Mamdouh W; Kjems J; Mokhir A; Besenbacher F; Gothelf KV
    Nat Nanotechnol; 2010 Mar; 5(3):200-3. PubMed ID: 20190747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hidden complexity in the isomerization dynamics of Holliday junctions.
    Hyeon C; Lee J; Yoon J; Hohng S; Thirumalai D
    Nat Chem; 2012 Nov; 4(11):907-14. PubMed ID: 23089865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized assembly and covalent coupling of single-molecule DNA origami nanoarrays.
    Gopinath A; Rothemund PW
    ACS Nano; 2014 Dec; 8(12):12030-40. PubMed ID: 25412345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using FRET to monitor protein-induced DNA bending: the TBP-TATA complex as a model system.
    Blair RH; Goodrich JA; Kugel JF
    Methods Mol Biol; 2013; 977():203-15. PubMed ID: 23436364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-molecule DNA origami aptasensors for real-time biomarker detection.
    Cervantes-Salguero K; Freeley M; Chávez JL; Palma M
    J Mater Chem B; 2020 Aug; 8(30):6352-6356. PubMed ID: 32716449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-molecule mechanochemical sensing using DNA origami nanostructures.
    Koirala D; Shrestha P; Emura T; Hidaka K; Mandal S; Endo M; Sugiyama H; Mao H
    Angew Chem Int Ed Engl; 2014 Jul; 53(31):8137-41. PubMed ID: 24931175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.