These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Systemic defense priming by Pseudomonas putida KT2440 in maize depends on benzoxazinoid exudation from the roots. Neal AL; Ton J Plant Signal Behav; 2013 Jan; 8(1):e22655. PubMed ID: 23221758 [TBL] [Abstract][Full Text] [Related]
25. Aboveground Whitefly Infestation Modulates Transcriptional Levels of Anthocyanin Biosynthesis and Jasmonic Acid Signaling-Related Genes and Augments the Cope with Drought Stress of Maize. Park YS; Bae DW; Ryu CM PLoS One; 2015; 10(12):e0143879. PubMed ID: 26630288 [TBL] [Abstract][Full Text] [Related]
26. Jasmonate biosynthesis and signaling in monocots: a comparative overview. Lyons R; Manners JM; Kazan K Plant Cell Rep; 2013 Jun; 32(6):815-27. PubMed ID: 23455708 [TBL] [Abstract][Full Text] [Related]
28. Effects of Nitrogen Supply on Induced Defense in Maize ( Wang W; Wang X; Liao H; Feng Y; Guo Y; Shu Y; Wang J Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142369 [TBL] [Abstract][Full Text] [Related]
29. The platelet-activating factor acetylhydrolase gene derived from Trichoderma harzianum induces maize resistance to Curvularia lunata through the jasmonic acid signaling pathway. Yu C; Fan L; Gao J; Wang M; Wu Q; Tang J; Li Y; Chen J J Environ Sci Health B; 2015; 50(10):708-17. PubMed ID: 26273755 [TBL] [Abstract][Full Text] [Related]
30. Key Genes in the JAZ Signaling Pathway Are Up-Regulated Faster and More Abundantly in Caterpillar-Resistant Maize. Han Y; Luthe D J Chem Ecol; 2022 Feb; 48(2):179-195. PubMed ID: 34982368 [TBL] [Abstract][Full Text] [Related]
31. Trade-offs between the accumulation of cuticular wax and jasmonic acid-mediated herbivory resistance in maize. Liu J; Li L; Xiong Z; Robert CAM; Li B; He S; Chen W; Bi J; Zhai G; Guo S; Zhang H; Li J; Zhou S; Zhang X; Song CP J Integr Plant Biol; 2024 Jan; 66(1):143-159. PubMed ID: 37975264 [TBL] [Abstract][Full Text] [Related]
32. The rice/maize pathogen Cochliobolus spp. infect and reproduce on Arabidopsis revealing differences in defensive phytohormone function between monocots and dicots. Völz R; Park JY; Kim S; Park SY; Harris W; Chung H; Lee YH Plant J; 2020 Jul; 103(1):412-429. PubMed ID: 32168401 [TBL] [Abstract][Full Text] [Related]
33. Quantitative relationships between induced jasmonic acid levels and volatile emission in Zea mays during Spodoptera exigua herbivory. Schmelz EA; Alborn HT; Banchio E; Tumlinson JH Planta; 2003 Feb; 216(4):665-73. PubMed ID: 12569409 [TBL] [Abstract][Full Text] [Related]
34. A maize line resistant to herbivory constitutively releases (E) -beta-caryophyllene. Smith WE; Shivaji R; Williams WP; Luthe DS; Sandoya GV; Smith CL; Sparks DL; Brown AE J Econ Entomol; 2012 Feb; 105(1):120-8. PubMed ID: 22420263 [TBL] [Abstract][Full Text] [Related]
35. Comparative proteomic analysis reveals insights into the dynamic responses of maize (Zea mays L.) to Setosphaeria turcica infection. Liu Y; Gong X; Zhou Q; Liu Y; Liu Z; Han J; Dong J; Gu S Plant Sci; 2021 Mar; 304():110811. PubMed ID: 33568308 [TBL] [Abstract][Full Text] [Related]
36. Setaria viridis as a model for translational genetic studies of jasmonic acid-related insect defenses in Zea mays. Hunter CT; Block AK; Christensen SA; Li QB; Rering C; Alborn HT Plant Sci; 2020 Feb; 291():110329. PubMed ID: 31928686 [TBL] [Abstract][Full Text] [Related]