These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 22523230)

  • 1. Accurate risk-based chemical screening relies on robust exposure estimates.
    Rudel R; Perovich L
    Toxicol Sci; 2012 Jul; 128(1):295-6; author reply 297-9. PubMed ID: 22523230
    [No Abstract]   [Full Text] [Related]  

  • 2. Integration of dosimetry, exposure, and high-throughput screening data in chemical toxicity assessment.
    Wetmore BA; Wambaugh JF; Ferguson SS; Sochaski MA; Rotroff DM; Freeman K; Clewell HJ; Dix DJ; Andersen ME; Houck KA; Allen B; Judson RS; Singh R; Kavlock RJ; Richard AM; Thomas RS
    Toxicol Sci; 2012 Jan; 125(1):157-74. PubMed ID: 21948869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical safety without animals.
    Westmoreland C; Carmichael PL
    Nat Biotechnol; 2014 Jun; 32(6):541-3. PubMed ID: 24911497
    [No Abstract]   [Full Text] [Related]  

  • 4. Tox21 Enricher: Web-based Chemical/Biological Functional Annotation Analysis Tool Based on Tox21 Toxicity Screening Platform.
    Hur J; Danes L; Hsieh JH; McGregor B; Krout D; Auerbach S
    Mol Inform; 2018 May; 37(5):e1700129. PubMed ID: 29377626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Medium- and high-throughput screening of neurotoxicants using C. elegans.
    Boyd WA; Smith MV; Kissling GE; Freedman JH
    Neurotoxicol Teratol; 2010; 32(1):68-73. PubMed ID: 19166924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stem cells are the most sensitive screening tool to identify toxicity of GATA4-targeted novel small-molecule compounds.
    Karhu ST; Välimäki MJ; Jumppanen M; Kinnunen SM; Pohjolainen L; Leigh RS; Auno S; Földes G; Boije Af Gennäs G; Yli-Kauhaluoma J; Ruskoaho H; Talman V
    Arch Toxicol; 2018 Sep; 92(9):2897-2911. PubMed ID: 29987409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying Attributes That Influence In Vitro-to-In Vivo Concordance by Comparing In Vitro Tox21 Bioactivity Versus In Vivo DrugMatrix Transcriptomic Responses Across 130 Chemicals.
    Klaren WD; Ring C; Harris MA; Thompson CM; Borghoff S; Sipes NS; Hsieh JH; Auerbach SS; Rager JE
    Toxicol Sci; 2019 Jan; 167(1):157-171. PubMed ID: 30202884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drosophotoxicology: the growing potential for Drosophila in neurotoxicology.
    Rand MD
    Neurotoxicol Teratol; 2010; 32(1):74-83. PubMed ID: 19559084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Protocol for In Vitro High-Throughput Chemical Susceptibility Screening in Differentiating NT2 Stem Cells.
    Menzner AK; Gilbert DF
    Methods Mol Biol; 2017; 1601():61-70. PubMed ID: 28470517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. tcpl: the ToxCast pipeline for high-throughput screening data.
    Filer DL; Kothiya P; Setzer RW; Judson RS; Martin MT
    Bioinformatics; 2017 Feb; 33(4):618-620. PubMed ID: 27797781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput assay development for combined in vitro toxicity screening of hit compounds and their metabolites in early drug-discovery stage.
    Siricilla S
    Bioanalysis; 2017 Jul; 9(13):959-961. PubMed ID: 28708435
    [No Abstract]   [Full Text] [Related]  

  • 12. Leveraging high content screening for in vitro cytotoxicity assessment.
    Haskins JR
    Drug Discov Today; 2005; Suppl():1. PubMed ID: 23570159
    [No Abstract]   [Full Text] [Related]  

  • 13. Medium to high throughput screening: microfabrication and chip-based technology.
    Wen Y; Zhang X; Yang ST
    Adv Exp Med Biol; 2012; 745():181-209. PubMed ID: 22437819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporating population variability and susceptible subpopulations into dosimetry for high-throughput toxicity testing.
    Wetmore BA; Allen B; Clewell HJ; Parker T; Wambaugh JF; Almond LM; Sochaski MA; Thomas RS
    Toxicol Sci; 2014 Nov; 142(1):210-24. PubMed ID: 25145659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Profiling of toxicity and identification of distinct apoptosis profiles using a 384-well high-throughput flow cytometry screening platform.
    Luu YK; Rana P; Duensing TD; Black C; Will Y
    J Biomol Screen; 2012 Jul; 17(6):806-12. PubMed ID: 22496094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UCLA's Molecular Screening Shared Resource: enhancing small molecule discovery with functional genomics and new technology.
    Damoiseaux R
    Comb Chem High Throughput Screen; 2014 May; 17(4):356-68. PubMed ID: 24661210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. State-of-the-Art Metabolic Toxicity Screening and Pathway Evaluation.
    Hvastkovs EG; Rusling JF
    Anal Chem; 2016 May; 88(9):4584-99. PubMed ID: 27043322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural product libraries: assembly, maintenance, and screening.
    Butler MS; Fontaine F; Cooper MA
    Planta Med; 2014 Sep; 80(14):1161-70. PubMed ID: 24310213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect-Based Screening Methods for Water Quality Characterization Will Augment Conventional Analyte-by-Analyte Chemical Methods in Research As Well As Regulatory Monitoring.
    Doyle E; Biales A; Focazio M; Griffin D; Loftin K; Wilson V
    Environ Sci Technol; 2015 Dec; 49(24):13906-7. PubMed ID: 25521837
    [No Abstract]   [Full Text] [Related]  

  • 20. Cheminformatics approaches to analyze diversity in compound screening libraries.
    Akella LB; DeCaprio D
    Curr Opin Chem Biol; 2010 Jun; 14(3):325-30. PubMed ID: 20457001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.