These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 22523746)

  • 1. Hydrogenolysis of lignosulfonate into phenols over heterogeneous nickel catalysts.
    Song Q; Wang F; Xu J
    Chem Commun (Camb); 2012 Jul; 48(56):7019-21. PubMed ID: 22523746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent effects on the hydrogenolysis of diphenyl ether with Raney nickel and their implications for the conversion of lignin.
    Wang X; Rinaldi R
    ChemSusChem; 2012 Aug; 5(8):1455-66. PubMed ID: 22549827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A heterogeneous nickel catalyst for the hydrogenolysis of aryl ethers without arene hydrogenation.
    Sergeev AG; Webb JD; Hartwig JF
    J Am Chem Soc; 2012 Dec; 134(50):20226-9. PubMed ID: 23163756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective, nickel-catalyzed hydrogenolysis of aryl ethers.
    Sergeev AG; Hartwig JF
    Science; 2011 Apr; 332(6028):439-43. PubMed ID: 21512027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lignin-to-chemicals: Application of catalytic hydrogenolysis of lignin to produce phenols and terephthalic acid via metal-based catalysts.
    Tang D; Huang X; Tang W; Jin Y
    Int J Biol Macromol; 2021 Nov; 190():72-85. PubMed ID: 34480907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A route for lignin and bio-oil conversion: dehydroxylation of phenols into arenes by catalytic tandem reactions.
    Wang X; Rinaldi R
    Angew Chem Int Ed Engl; 2013 Oct; 52(44):11499-503. PubMed ID: 24030931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Titanium nitride-nickel nanocomposite as heterogeneous catalyst for the hydrogenolysis of aryl ethers.
    Molinari V; Giordano C; Antonietti M; Esposito D
    J Am Chem Soc; 2014 Feb; 136(5):1758-61. PubMed ID: 24437507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective nickel-catalyzed conversion of model and lignin-derived phenolic compounds to cyclohexanone-based polymer building blocks.
    Schutyser W; Van den Bosch S; Dijkmans J; Turner S; Meledina M; Van Tendeloo G; Debecker DP; Sels BF
    ChemSusChem; 2015 May; 8(10):1805-18. PubMed ID: 25881563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemo- and Regioselective Hydrogenolysis of Diaryl Ether C-O Bonds by a Robust Heterogeneous Ni/C Catalyst: Applications to the Cleavage of Complex Lignin-Related Fragments.
    Gao F; Webb JD; Hartwig JF
    Angew Chem Int Ed Engl; 2016 Jan; 55(4):1474-8. PubMed ID: 26666391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Yield Production of Natural Phenolic Alcohols from Woody Biomass Using a Nickel-Based Catalyst.
    Chen J; Lu F; Si X; Nie X; Chen J; Lu R; Xu J
    ChemSusChem; 2016 Dec; 9(23):3353-3360. PubMed ID: 27860423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodeoxygenation of phenols as lignin models under acid-free conditions with carbon-supported platinum catalysts.
    Ohta H; Kobayashi H; Hara K; Fukuoka A
    Chem Commun (Camb); 2011 Nov; 47(44):12209-11. PubMed ID: 21991582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic transfer hydrogenolysis of lignin into monophenols over platinum-rhenium supported on titanium dioxide using isopropanol as in situ hydrogen source.
    Hu J; Zhang S; Xiao R; Jiang X; Wang Y; Sun Y; Lu P
    Bioresour Technol; 2019 May; 279():228-233. PubMed ID: 30735932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodeoxygenation of lignin-derived phenolic compounds to hydrocarbons over Ni/SiO2-ZrO2 catalysts.
    Zhang X; Zhang Q; Wang T; Ma L; Yu Y; Chen L
    Bioresour Technol; 2013 Apr; 134():73-80. PubMed ID: 23500562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The selective hydrogenolysis of C-O bonds in lignin model compounds by Pd-Ni bimetallic nanoparticles in ionic liquids.
    Sun KK; Lu GP; Zhang JW; Cai C
    Dalton Trans; 2017 Sep; 46(35):11884-11889. PubMed ID: 28849827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From waste biomass to solid support: lignosulfonate as a cost-effective and renewable supporting material for catalysis.
    Sun S; Bai R; Gu Y
    Chemistry; 2014 Jan; 20(2):549-58. PubMed ID: 24307475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ni-catalyzed cleavage of aryl ethers in the aqueous phase.
    He J; Zhao C; Lercher JA
    J Am Chem Soc; 2012 Dec; 134(51):20768-75. PubMed ID: 23190332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mild hydrogenolysis of in-situ and isolated Pinus radiata lignins.
    Torr KM; van de Pas DJ; Cazeils E; Suckling ID
    Bioresour Technol; 2011 Aug; 102(16):7608-11. PubMed ID: 21664814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis.
    Bu Q; Lei H; Zacher AH; Wang L; Ren S; Liang J; Wei Y; Liu Y; Tang J; Zhang Q; Ruan R
    Bioresour Technol; 2012 Nov; 124():470-7. PubMed ID: 23021958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partial depolymerization of enzymolysis lignin via mild hydrogenolysis over Raney Nickel.
    Xin J; Zhang P; Wolcott MP; Zhang X; Zhang J
    Bioresour Technol; 2014 Mar; 155():422-6. PubMed ID: 24461256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical cleavage of aryl ethers promoted by sodium borohydride.
    Wu WB; Huang JM
    J Org Chem; 2014 Nov; 79(21):10189-95. PubMed ID: 25317950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.