These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 22523980)

  • 21. Design of highly sensitive C2H5OH sensors using self-assembled ZnO nanostructures.
    Kim KM; Kim HR; Choi KI; Kim HJ; Lee JH
    Sensors (Basel); 2011; 11(10):9685-99. PubMed ID: 22163720
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancement of light extraction efficiency of GaN-based light-emitting diodes by ZnO nanorods with different sizes.
    Oh S; Shin KS; Kim SW; Lee S; Yu H; Cho S; Kim KK
    J Nanosci Nanotechnol; 2013 May; 13(5):3696-9. PubMed ID: 23858930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel amperometric biosensor based on ZnO:Co nanoclusters for biosensing glucose.
    Zhao ZW; Chen XJ; Tay BK; Chen JS; Han ZJ; Khor KA
    Biosens Bioelectron; 2007 Aug; 23(1):135-9. PubMed ID: 17478087
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multipod znO nanoforms: low temperature synthesis and characterization.
    Ghoshal T; Kar S; Biswas S; Majumdar G; Chaudhuri S
    J Nanosci Nanotechnol; 2007 Feb; 7(2):689-95. PubMed ID: 17450815
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Non-enzymatic fluorescent glucose sensor using vertically aligned ZnO nanotubes grown by a one-step, seedless hydrothermal method.
    Mai HH; Tran DH; Janssens E
    Mikrochim Acta; 2019 Mar; 186(4):245. PubMed ID: 30879198
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-yield chemical synthesis of hexagonal ZnO nanoparticles and nanorods with excellent optical properties.
    Giri PK; Bhattacharyya S; Chetia B; Kumari S; Singh DK; Iyer PK
    J Nanosci Nanotechnol; 2012 Jan; 12(1):201-6. PubMed ID: 22523966
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ethanol and hydrogen sensors based on ZnO nanoparticles and nanowires.
    Rout CS; Raju AR; Govindaraj A; Rao CN
    J Nanosci Nanotechnol; 2007 Jun; 7(6):1923-9. PubMed ID: 17654966
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controllable synthesis of vertically aligned ZnO nanorod arrays in aqueous solution.
    Ma S; Fang G; Li C; Sheng S; Fang L; Fu Q; Zhao XZ
    J Nanosci Nanotechnol; 2006 Jul; 6(7):2062-6. PubMed ID: 17025125
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of optically enhanced ZnO nanorods and microrods using novel biocatalysts.
    Kumar N; Dorfman A; Hahm JI
    J Nanosci Nanotechnol; 2005 Nov; 5(11):1915-8. PubMed ID: 16433431
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immobilization and direct electrochemistry of glucose oxidase on a tetragonal pyramid-shaped porous ZnO nanostructure for a glucose biosensor.
    Dai Z; Shao G; Hong J; Bao J; Shen J
    Biosens Bioelectron; 2009 Jan; 24(5):1286-91. PubMed ID: 18774704
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ZnO-based hollow microspheres: biopolymer-assisted assemblies from ZnO nanorods.
    Gao S; Zhang H; Wang X; Deng R; Sun D; Zheng G
    J Phys Chem B; 2006 Aug; 110(32):15847-52. PubMed ID: 16898735
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A surface acoustic wave-based immunosensing device using a nanocrystalline ZnO film on Si.
    Lee DS; Lee JH; Luo J; Fu Y; Milne WI; Maeng S; Jung MY; Park SH; Yoon HC
    J Nanosci Nanotechnol; 2009 Dec; 9(12):7181-5. PubMed ID: 19908753
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-yield self-assembly of flower-like ZnO nanostructures.
    Jiang L; Feng X; Zhai J; Jin M; Song Y; Zhu D
    J Nanosci Nanotechnol; 2006 Jun; 6(6):1830-2. PubMed ID: 17025094
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication and optical property of vertically-aligned ZnO/Si double nanostructures.
    Ko YH; Chung KS; Yu JS
    J Nanosci Nanotechnol; 2012 Jun; 12(6):4570-6. PubMed ID: 22905502
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Time-resolved investigation of bright visible wavelength luminescence from sulfur-doped ZnO nanowires and micropowders.
    Foreman JV; Li J; Peng H; Choi S; Everitt HO; Liu J
    Nano Lett; 2006 Jun; 6(6):1126-30. PubMed ID: 16771566
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Control of the morphology and optical properties of ZnO nanostructures via hot mixing of reverse micelles.
    Mao J; Li XL; Qin WJ; Niu KY; Yang J; Ling T; Du XW
    Langmuir; 2010 Sep; 26(17):13755-9. PubMed ID: 20666465
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bio-industrial Waste Silk Fibroin Protein and Carbon Nanotube-Induced Carbonized Growth of One-Dimensional ZnO-based Bio-nanosheets and their Enhanced Optoelectronic Properties.
    Saravanan A; Huang BR; Kathiravan D
    Chemistry; 2018 Aug; 24(48):12574-12583. PubMed ID: 29856890
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural and morphology of ZnO nanorods synthesized using ZnO seeded growth hydrothermal method and its properties as UV sensing.
    Ridhuan NS; Razak KA; Lockman Z; Abdul Aziz A
    PLoS One; 2012; 7(11):e50405. PubMed ID: 23189199
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controlled synthesis and field emission properties of ZnO nanostructures with different morphologies.
    Huang YH; Zhang Y; Liu L; Fan SS; Wei Y; He J
    J Nanosci Nanotechnol; 2006 Mar; 6(3):787-90. PubMed ID: 16573138
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photoluminescence studies of ZnO nanorods grown by plasma-assisted molecular beam epitaxy.
    Kim MS; Nam G; Leem JY
    J Nanosci Nanotechnol; 2013 May; 13(5):3582-5. PubMed ID: 23858907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.