These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 22524042)

  • 21. Striped alloy nanowire optical reflectance barcodes prepared from a single plating solution.
    Bulbarello A; Sattayasamitsathit S; Crevillen AG; Burdick J; Mannino S; Kanatharana P; Thavarungkul P; Escarpa A; Wang J
    Small; 2008 May; 4(5):597-600. PubMed ID: 18398924
    [No Abstract]   [Full Text] [Related]  

  • 22. Electronic control over attachment and self-assembly of alkyne groups on gold.
    Li Q; Han C; Fuentes-Cabrera M; Terrones H; Sumpter BG; Lu W; Bernholc J; Yi J; Gai Z; Baddorf AP; Maksymovych P; Pan M
    ACS Nano; 2012 Oct; 6(10):9267-75. PubMed ID: 23013321
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative enhanced Raman scattering of labeled DNA from gold and silver nanoparticles.
    Stokes RJ; Macaskill A; Lundahl PJ; Smith WE; Faulds K; Graham D
    Small; 2007 Sep; 3(9):1593-601. PubMed ID: 17647254
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controllable nanofabrication of aggregate-like nanoparticle substrates and evaluation for surface-enhanced Raman spectroscopy.
    Wells SM; Retterer SD; Oran JM; Sepaniak MJ
    ACS Nano; 2009 Dec; 3(12):3845-53. PubMed ID: 19911835
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of versatile 3-D ternary nanostructures via gas-mediated metal evaporation.
    Worsfold O; Wright JP; Himmelhaus M
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5896-902. PubMed ID: 19198323
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication of gold nanowires by electric-field-induced scanning probe lithography and in situ chemical development.
    Lee WK; Chen S; Chilkoti A; Zauscher S
    Small; 2007 Feb; 3(2):249-54. PubMed ID: 17199247
    [No Abstract]   [Full Text] [Related]  

  • 27. Transfer printing of metal nanoparticles with controllable dimensions, placement, and reproducible surface-enhanced Raman scattering effects.
    Xue M; Zhang Z; Zhu N; Wang F; Zhao XS; Cao T
    Langmuir; 2009 Apr; 25(8):4347-51. PubMed ID: 19320428
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multilayer enhanced gold film over nanostructure surface-enhanced Raman substrates.
    Li H; Baum CE; Sun J; Cullum BM
    Appl Spectrosc; 2006 Dec; 60(12):1377-85. PubMed ID: 17217586
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps.
    Duan H; Hu H; Kumar K; Shen Z; Yang JK
    ACS Nano; 2011 Sep; 5(9):7593-600. PubMed ID: 21846105
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct writing of metal nanostructures: lithographic tools for nanoplasmonics research.
    Leggett GJ
    ACS Nano; 2011 Mar; 5(3):1575-9. PubMed ID: 21417494
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Binary Pt-Si nanostructures prepared by focused electron-beam-induced deposition.
    Winhold M; Schwalb CH; Porrati F; Sachser R; Frangakis AS; Kämpken B; Terfort A; Auner N; Huth M
    ACS Nano; 2011 Dec; 5(12):9675-81. PubMed ID: 22050515
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly ordered anodic porous alumina with 13-nm hole intervals using a 2D array of monodisperse nanoparticles as a template.
    Matsui Y; Nishio K; Masuda H
    Small; 2006 Apr; 2(4):522-5. PubMed ID: 17193079
    [No Abstract]   [Full Text] [Related]  

  • 33. Angular distribution of surface-enhanced Raman scattering from individual au nanoparticle aggregates.
    Shegai T; Brian B; Miljković VD; Käll M
    ACS Nano; 2011 Mar; 5(3):2036-41. PubMed ID: 21323329
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An optimized nanoparticle separator enabled by electron beam induced deposition.
    Fowlkes JD; Doktycz MJ; Rack PD
    Nanotechnology; 2010 Apr; 21(16):165303. PubMed ID: 20351412
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering SERS via absorption control in novel hybrid Ni/Au nanovoids.
    Cole RM; Mahajan S; Bartlett PN; Baumberg JJ
    Opt Express; 2009 Aug; 17(16):13298-308. PubMed ID: 19654734
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A SERS-active nanocrystalline pd substrate and its nanopatterning leading to biochip fabrication.
    Bhuvana T; Kulkarni GU
    Small; 2008 May; 4(5):670-6. PubMed ID: 18491365
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of a one-dimensional array of nanopores horizontally aligned on a Si substrate.
    Zhang H; Chen Z; Li T; Saito K
    J Nanosci Nanotechnol; 2005 Oct; 5(10):1745-8. PubMed ID: 16245540
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A facile approach for self-assembled gold nanorods monolayer films and application in surface-enhanced Raman spectroscopy.
    Ma Z; Tian L; Qiang H
    J Nanosci Nanotechnol; 2009 Nov; 9(11):6716-20. PubMed ID: 19908589
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gold coated zinc oxide nanonecklaces as a SERS substrate.
    He L; Shi J; Sun X; Lin M; Yu P; Li H
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3509-15. PubMed ID: 21776731
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Silica nanowires fabricated with layer-by-layer self-assembled nanoparticles.
    Liu Y; Cui T
    J Nanosci Nanotechnol; 2006 Apr; 6(4):1019-23. PubMed ID: 16736760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.