These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 22524211)

  • 1. Quantifying surface roughness effects on phonon transport in silicon nanowires.
    Lim J; Hippalgaonkar K; Andrews SC; Majumdar A; Yang P
    Nano Lett; 2012 May; 12(5):2475-82. PubMed ID: 22524211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of phonon-surface roughness scattering on thermal conductivity of thin si nanowires.
    Martin P; Aksamija Z; Pop E; Ravaioli U
    Phys Rev Lett; 2009 Mar; 102(12):125503. PubMed ID: 19392295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral phonon scattering from sub-10 nm surface roughness wavelengths in metal-assisted chemically etched Si nanowires.
    Ghossoub MG; Valavala KV; Seong M; Azeredo B; Hsu K; Sadhu JS; Singh PK; Sinha S
    Nano Lett; 2013 Apr; 13(4):1564-71. PubMed ID: 23464810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal conductivity in porous silicon nanowire arrays.
    Weisse JM; Marconnet AM; Kim DR; Rao PM; Panzer MA; Goodson KE; Zheng X
    Nanoscale Res Lett; 2012 Oct; 7(1):554. PubMed ID: 23039084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vertical Silicon Nanowire Thermoelectric Modules with Enhanced Thermoelectric Properties.
    Lee S; Kim K; Kang DH; Meyyappan M; Baek CK
    Nano Lett; 2019 Feb; 19(2):747-755. PubMed ID: 30636421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires.
    Martin PN; Aksamija Z; Pop E; Ravaioli U
    Nano Lett; 2010 Apr; 10(4):1120-4. PubMed ID: 20222669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phonon surface scattering controlled length dependence of thermal conductivity of silicon nanowires.
    Xie G; Guo Y; Li B; Yang L; Zhang K; Tang M; Zhang G
    Phys Chem Chem Phys; 2013 Sep; 15(35):14647-52. PubMed ID: 23884577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Chemical Tuning of Phonon and Electron Transport in Free-Standing Silicon Nanowire Arrays.
    Pan Y; Tao Y; Qin G; Fedoryshyn Y; Raja SN; Hu M; Degen CL; Poulikakos D
    Nano Lett; 2016 Oct; 16(10):6364-6370. PubMed ID: 27580070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of the electron-phonon coupling on the thermal conductivity of silicon nanowires.
    Wan W; Xiong B; Zhang W; Feng J; Wang E
    J Phys Condens Matter; 2012 Jul; 24(29):295402. PubMed ID: 22728956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth time-dependent density and surface evolution of silicon nanowires in a vapor-liquid-solid process.
    Lee CY; Kim GS; Lee SY; Kim TH; Seo DW; Lee SK
    J Nanosci Nanotechnol; 2011 Aug; 11(8):6946-52. PubMed ID: 22103103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Significant reduction of thermal conductivity in silicon nanowire arrays.
    Zhang T; Wu SL; Zheng RT; Cheng GA
    Nanotechnology; 2013 Dec; 24(50):505718. PubMed ID: 24285219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lateral heat flow distribution and defect-dependent thermal resistance in an individual silicon nanowire.
    Lee SY; Lee WY; Thong JT; Kim GS; Lee SK
    Nanotechnology; 2016 Mar; 27(11):115402. PubMed ID: 26878139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct measurements of surface scattering in Si nanosheets using a microscale phonon spectrometer: implications for Casimir-limit predicted by Ziman theory.
    Hertzberg JB; Aksit M; Otelaja OO; Stewart DA; Robinson RD
    Nano Lett; 2014 Feb; 14(2):403-15. PubMed ID: 24256332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoelectric Properties of InA Nanowires from Full-Band Atomistic Simulations.
    Archetti D; Neophytou N
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33207779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron-phonon scattering effect on the lattice thermal conductivity of silicon nanostructures.
    Fu B; Tang G; Li Y
    Phys Chem Chem Phys; 2017 Nov; 19(42):28517-28526. PubMed ID: 28902205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal Transport in Silicon Nanowires at High Temperature up to 700 K.
    Lee J; Lee W; Lim J; Yu Y; Kong Q; Urban JJ; Yang P
    Nano Lett; 2016 Jul; 16(7):4133-40. PubMed ID: 27243378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sub-amorphous thermal conductivity in ultrathin crystalline silicon nanotubes.
    Wingert MC; Kwon S; Hu M; Poulikakos D; Xiang J; Chen R
    Nano Lett; 2015 Apr; 15(4):2605-11. PubMed ID: 25758163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Phonon Surface Scattering on Thermal Energy Distribution of Si and SiGe Nanowires.
    Malhotra A; Maldovan M
    Sci Rep; 2016 May; 6():25818. PubMed ID: 27174699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity.
    Nakamura Y
    Sci Technol Adv Mater; 2018; 19(1):31-43. PubMed ID: 29371907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hole Mobility Characteristics with Surface Roughness on Silicon-on-Insulator Substrate.
    Shin H; Han IK; Ko JH; Jang M
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6017-6020. PubMed ID: 29677736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.