These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 22524217)

  • 1. Probing embryonic stem cell autocrine and paracrine signaling using microfluidics.
    Przybyla L; Voldman J
    Annu Rev Anal Chem (Palo Alto Calif); 2012; 5():293-315. PubMed ID: 22524217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational model and microfluidic platform for the investigation of paracrine and autocrine signaling in mouse embryonic stem cells.
    Ellison D; Munden A; Levchenko A
    Mol Biosyst; 2009 Sep; 5(9):1004-12. PubMed ID: 19668866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive microfluidic control of regulatory ligand trajectories in individual pluripotent cells.
    Moledina F; Clarke G; Oskooei A; Onishi K; Günther A; Zandstra PW
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3264-9. PubMed ID: 22334649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic perfusion for regulating diffusible signaling in stem cells.
    Blagovic K; Kim LY; Voldman J
    PLoS One; 2011; 6(8):e22892. PubMed ID: 21829665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated microfluidic culture device to regulate endothelial cell differentiation from embryonic stem cells.
    Lee JM; Kim JE; Kang E; Lee SH; Chung BG
    Electrophoresis; 2011 Nov; 32(22):3133-7. PubMed ID: 22102496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic patterning of protein gradients on biomimetic hydrogel substrates.
    Cosson S; Lutolf MP
    Methods Cell Biol; 2014; 121():91-102. PubMed ID: 24560505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-micropillar-based microfluidic platform for single embryonic stem cell-derived neuronal differentiation.
    Lee JM; Kim JE; Borana J; Chung BH; Chung BG
    Electrophoresis; 2013 Jul; 34(13):1931-8. PubMed ID: 23977683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time monitoring of specific oxygen uptake rates of embryonic stem cells in a microfluidic cell culture device.
    Super A; Jaccard N; Cardoso Marques MP; Macown RJ; Griffin LD; Veraitch FS; Szita N
    Biotechnol J; 2016 Sep; 11(9):1179-89. PubMed ID: 27214658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust, microfabricated culture devices with improved control over the soluble microenvironment for the culture of embryonic stem cells.
    Macown RJ; Veraitch FS; Szita N
    Biotechnol J; 2014 Jun; 9(6):805-13. PubMed ID: 24677785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring the differentiation and migration patterns of neural cells derived from human embryonic stem cells using a microfluidic culture system.
    Lee N; Park JW; Kim HJ; Yeon JH; Kwon J; Ko JJ; Oh SH; Kim HS; Kim A; Han BS; Lee SC; Jeon NL; Song J
    Mol Cells; 2014 Jun; 37(6):497-502. PubMed ID: 24938227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recapitulation of in vivo-like paracrine signals of human mesenchymal stem cells for functional neuronal differentiation of human neural stem cells in a 3D microfluidic system.
    Yang K; Park HJ; Han S; Lee J; Ko E; Kim J; Lee JS; Yu JH; Song KY; Cheong E; Cho SR; Chung S; Cho SW
    Biomaterials; 2015 Sep; 63():177-88. PubMed ID: 26113074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Periodic "flow-stop" perfusion microchannel bioreactors for mammalian and human embryonic stem cell long-term culture.
    Korin N; Bransky A; Dinnar U; Levenberg S
    Biomed Microdevices; 2009 Feb; 11(1):87-94. PubMed ID: 18802754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microfluidic traps system supporting prolonged culture of human embryonic stem cells aggregates.
    Khoury M; Bransky A; Korin N; Konak LC; Enikolopov G; Tzchori I; Levenberg S
    Biomed Microdevices; 2010 Dec; 12(6):1001-8. PubMed ID: 20665114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering approaches toward deconstructing and controlling the stem cell environment.
    Edalat F; Bae H; Manoucheri S; Cha JM; Khademhosseini A
    Ann Biomed Eng; 2012 Jun; 40(6):1301-15. PubMed ID: 22101755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attenuation of extrinsic signaling reveals the importance of matrix remodeling on maintenance of embryonic stem cell self-renewal.
    Przybyla LM; Voldman J
    Proc Natl Acad Sci U S A; 2012 Jan; 109(3):835-40. PubMed ID: 22215601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device.
    van der Meer AD; Orlova VV; ten Dijke P; van den Berg A; Mummery CL
    Lab Chip; 2013 Sep; 13(18):3562-8. PubMed ID: 23702711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbioreactor arrays for full factorial screening of exogenous and paracrine factors in human embryonic stem cell differentiation.
    Titmarsh DM; Hudson JE; Hidalgo A; Elefanty AG; Stanley EG; Wolvetang EJ; Cooper-White JJ
    PLoS One; 2012; 7(12):e52405. PubMed ID: 23300662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic cell culture.
    Mehling M; Tay S
    Curr Opin Biotechnol; 2014 Feb; 25():95-102. PubMed ID: 24484886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heparan sulfate regulates self-renewal and pluripotency of embryonic stem cells.
    Sasaki N; Okishio K; Ui-Tei K; Saigo K; Kinoshita-Toyoda A; Toyoda H; Nishimura T; Suda Y; Hayasaka M; Hanaoka K; Hitoshi S; Ikenaka K; Nishihara S
    J Biol Chem; 2008 Feb; 283(6):3594-3606. PubMed ID: 18024963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal periodic perfusion strategy for robust long-term microfluidic cell culture.
    Giulitti S; Magrofuoco E; Prevedello L; Elvassore N
    Lab Chip; 2013 Nov; 13(22):4430-41. PubMed ID: 24064704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.