These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 22524299)

  • 1. Ultrathin graphite foam: a three-dimensional conductive network for battery electrodes.
    Ji H; Zhang L; Pettes MT; Li H; Chen S; Shi L; Piner R; Ruoff RS
    Nano Lett; 2012 May; 12(5):2446-51. PubMed ID: 22524299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene-encapsulated Si on ultrathin-graphite foam as anode for high capacity lithium-ion batteries.
    Ji J; Ji H; Zhang LL; Zhao X; Bai X; Fan X; Zhang F; Ruoff RS
    Adv Mater; 2013 Sep; 25(33):4673-7. PubMed ID: 23847098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binder free three-dimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries.
    Xi K; Kidambi PR; Chen R; Gao C; Peng X; Ducati C; Hofmann S; Kumar RV
    Nanoscale; 2014 Jun; 6(11):5746-53. PubMed ID: 24658177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile synthesis of a carbon supported lithium iron phosphate nanocomposite cathode material from metal-organic framework for lithium-ion batteries.
    Yu L; Zeng H; Jia R; Zhang R; Xu B
    J Colloid Interface Sci; 2024 Oct; 672():564-573. PubMed ID: 38852357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced charge transport properties of an LFP/C/graphite composite as a cathode material for aqueous rechargeable lithium batteries.
    Duan W; Husain M; Li Y; Lashari NUR; Yang Y; Ma C; Zhao Y; Li X
    RSC Adv; 2023 Aug; 13(36):25327-25333. PubMed ID: 37622017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile Deposition of the LiFePO
    Tolganbek N; Zhalgas N; Kadyrov Y; Umirov N; Bakenov Z; Mentbayeva A
    ACS Omega; 2023 Feb; 8(8):8045-8051. PubMed ID: 36872969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enabling high-performance lithium iron phosphate cathodes through an interconnected carbon network for practical and high-energy lithium-ion batteries.
    Li B; Xiao J; Zhu X; Wu Z; Zhang X; Han Y; Niu J; Wang F
    J Colloid Interface Sci; 2024 Jan; 653(Pt A):942-948. PubMed ID: 37774657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC-Li) as novel binder in lithium-ion battery.
    Qiu L; Shao Z; Wang D; Wang W; Wang F; Wang J
    Carbohydr Polym; 2014 Oct; 111():588-91. PubMed ID: 25037391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SnO
    Zhang F; Yang C; Gao X; Chen S; Hu Y; Guan H; Ma Y; Zhang J; Zhou H; Qi L
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):9620-9629. PubMed ID: 28248075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prominent enhancement of stability under high current density of LiFePO
    Kim J; Song S; Lee CS; Lee M; Bae J
    J Colloid Interface Sci; 2023 Nov; 650(Pt B):1958-1965. PubMed ID: 37517195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Activation of Nitrogen-Doped Graphene Anchored on Graphite Foam for a High-Capacity Anode.
    Ji J; Liu J; Lai L; Zhao X; Zhen Y; Lin J; Zhu Y; Ji H; Zhang LL; Ruoff RS
    ACS Nano; 2015 Aug; 9(8):8609-16. PubMed ID: 26258909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulose sulfate lithium as a conductive binder for LiFePO
    Su X; Fang H; Yang H; Zou F; Li G; Wang L; Liao H; Guan W; Hu X
    Carbohydr Polym; 2023 Aug; 313():120848. PubMed ID: 37182948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrahigh-Areal-Capacity Battery Anodes Enabled by Free-Standing Vanadium Nitride@N-Doped Carbon/Graphene Architecture.
    Li C; Zhu L; Qi S; Ge W; Ma W; Zhao Y; Huang R; Xu L; Qian Y
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49607-49616. PubMed ID: 33104326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eddy current separation for recovering aluminium and lithium-iron phosphate components of spent lithium-iron phosphate batteries.
    Bi H; Zhu H; Zu L; Gao Y; Gao S; Wu Z
    Waste Manag Res; 2019 Dec; 37(12):1217-1228. PubMed ID: 31486742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of Tough, Binder-Free, and Self-Supporting LiFePO
    Guo M; Cao Z; Liu Y; Ni Y; Chen X; Terrones M; Wang Y
    Adv Sci (Weinh); 2023 May; 10(13):e2207355. PubMed ID: 36905241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional SnO2/carbon on Cu foam for high-performance lithium ion battery anodes.
    Chen W; Maloney S; Wang W
    Nanotechnology; 2016 Oct; 27(41):415401. PubMed ID: 27587237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Ternary Polyaniline/Active Carbon/Lithium Iron Phosphate Composite as Cathode Material for Lithium Ion Battery.
    Wang X; Zhang W; Huang Y; Xia T; Lian Y
    J Nanosci Nanotechnol; 2016 Jun; 16(6):6494-7. PubMed ID: 27427742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of LiFePO
    Huang CY; Kuo TR; Yougbaré S; Lin LY
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1457-1465. PubMed ID: 34598027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfur nanodots electrodeposited on ni foam as high-performance cathode for Li-S batteries.
    Zhao Q; Hu X; Zhang K; Zhang N; Hu Y; Chen J
    Nano Lett; 2015 Jan; 15(1):721-6. PubMed ID: 25541748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.