These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 22524441)

  • 1. Direct nanoscale imaging of ballistic and diffusive thermal transport in graphene nanostructures.
    Pumarol ME; Rosamond MC; Tovee P; Petty MC; Zeze DA; Falko V; Kolosov OV
    Nano Lett; 2012 Jun; 12(6):2906-11. PubMed ID: 22524441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition.
    Cai W; Moore AL; Zhu Y; Li X; Chen S; Shi L; Ruoff RS
    Nano Lett; 2010 May; 10(5):1645-51. PubMed ID: 20405895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat conduction across monolayer and few-layer graphenes.
    Koh YK; Bae MH; Cahill DG; Pop E
    Nano Lett; 2010 Nov; 10(11):4363-8. PubMed ID: 20923234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite.
    Pettes MT; Ji H; Ruoff RS; Shi L
    Nano Lett; 2012 Jun; 12(6):2959-64. PubMed ID: 22612725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain dependence of the heat transport properties of graphene nanoribbons.
    Yeo PS; Loh KP; Gan CK
    Nanotechnology; 2012 Dec; 23(49):495702. PubMed ID: 23149343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ballistic thermal conductance of graphene ribbons.
    Muñoz E; Lu J; Yakobson BI
    Nano Lett; 2010 May; 10(5):1652-6. PubMed ID: 20402531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal conduction and rectification in few-layer graphene Y junctions.
    Zhang G; Zhang H
    Nanoscale; 2011 Nov; 3(11):4604-7. PubMed ID: 21987096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomalous size dependence of the thermal conductivity of graphene ribbons.
    Nika DL; Askerov AS; Balandin AA
    Nano Lett; 2012 Jun; 12(6):3238-44. PubMed ID: 22612247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic phonon lifetimes and thermal transport in free-standing and strained graphene.
    Bonini N; Garg J; Marzari N
    Nano Lett; 2012 Jun; 12(6):2673-8. PubMed ID: 22591411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phonon-interface scattering in multilayer graphene on an amorphous support.
    Sadeghi MM; Jo I; Shi L
    Proc Natl Acad Sci U S A; 2013 Oct; 110(41):16321-6. PubMed ID: 24067656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of thermal dissipation by adding graphene materials to surface coating of LED lighting module.
    Kim S; Jeong JY; Han SH; Kim JH; Kwon KT; Hwang MK; Kim IT; Cho GS
    J Nanosci Nanotechnol; 2013 May; 13(5):3554-8. PubMed ID: 23858901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal transport in functionalized graphene.
    Kim JY; Lee JH; Grossman JC
    ACS Nano; 2012 Oct; 6(10):9050-7. PubMed ID: 22973878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene polyimide nanocomposites; thermal, mechanical, and high-temperature shape memory effects.
    Yoonessi M; Shi Y; Scheiman DA; Lebron-Colon M; Tigelaar DM; Weiss RA; Meador MA
    ACS Nano; 2012 Sep; 6(9):7644-55. PubMed ID: 22931435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale reduction of graphene fluoride via thermochemical nanolithography.
    Lee WK; Haydell M; Robinson JT; Laracuente AR; Cimpoiasu E; King WP; Sheehan PE
    ACS Nano; 2013 Jul; 7(7):6219-24. PubMed ID: 23758200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC.
    Yue Y; Zhang J; Wang X
    Small; 2011 Dec; 7(23):3324-33. PubMed ID: 21997970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic-scale investigation of graphene grown on Cu foil and the effects of thermal annealing.
    Cho J; Gao L; Tian J; Cao H; Wu W; Yu Q; Yitamben EN; Fisher B; Guest JR; Chen YP; Guisinger NP
    ACS Nano; 2011 May; 5(5):3607-13. PubMed ID: 21500843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing the effects of dispersed Stone-Thrower-Wales defects and double vacancies on the thermal conductivity of graphene nanoribbons.
    Yeo JJ; Liu Z; Ng TY
    Nanotechnology; 2012 Sep; 23(38):385702. PubMed ID: 22947664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization.
    Song SH; Park KH; Kim BH; Choi YW; Jun GH; Lee DJ; Kong BS; Paik KW; Jeon S
    Adv Mater; 2013 Feb; 25(5):732-7. PubMed ID: 23161437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-field electrical and thermal transport in suspended graphene.
    Dorgan VE; Behnam A; Conley HJ; Bolotin KI; Pop E
    Nano Lett; 2013 Oct; 13(10):4581-6. PubMed ID: 23387323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conductance anisotropy in epitaxial graphene sheets generated by substrate interactions.
    Yakes MK; Gunlycke D; Tedesco JL; Campbell PM; Myers-Ward RL; Eddy CR; Gaskill DK; Sheehan PE; Laracuente AR
    Nano Lett; 2010 May; 10(5):1559-62. PubMed ID: 20397734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.