BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 22524707)

  • 1. The fraction dose absorbed, in humans, and high jejunal human permeability relationship.
    Dahan A; Lennernäs H; Amidon GL
    Mol Pharm; 2012 Jun; 9(6):1847-51. PubMed ID: 22524707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-permeability criterion for BCS classification: segmental/pH dependent permeability considerations.
    Dahan A; Miller JM; Hilfinger JM; Yamashita S; Yu LX; Lennernäs H; Amidon GL
    Mol Pharm; 2010 Oct; 7(5):1827-34. PubMed ID: 20701326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regional-dependent intestinal permeability and BCS classification: elucidation of pH-related complexity in rats using pseudoephedrine.
    Fairstein M; Swissa R; Dahan A
    AAPS J; 2013 Apr; 15(2):589-97. PubMed ID: 23440549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Translating Human Effective Jejunal Intestinal Permeability to Surface-Dependent Intrinsic Permeability: a Pragmatic Method for a More Mechanistic Prediction of Regional Oral Drug Absorption.
    Olivares-Morales A; Lennernäs H; Aarons L; Rostami-Hodjegan A
    AAPS J; 2015 Sep; 17(5):1177-92. PubMed ID: 25986421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of amiloride on the in vivo effective permeability of amoxicillin in human jejunum: experience from a regional perfusion technique.
    Lennernäs H; Knutson L; Knutson T; Hussain A; Lesko L; Salmonson T; Amidon GL
    Eur J Pharm Sci; 2002 Apr; 15(3):271-7. PubMed ID: 11923059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intestinal permeability and its relevance for absorption and elimination.
    Lennernäs H
    Xenobiotica; 2007; 37(10-11):1015-51. PubMed ID: 17968735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The complexity of intestinal permeability: Assigning the correct BCS classification through careful data interpretation.
    Zur M; Hanson AS; Dahan A
    Eur J Pharm Sci; 2014 Sep; 61():11-7. PubMed ID: 24262076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim.
    Sjögren E; Westergren J; Grant I; Hanisch G; Lindfors L; Lennernäs H; Abrahamsson B; Tannergren C
    Eur J Pharm Sci; 2013 Jul; 49(4):679-98. PubMed ID: 23727464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of human absorption of a trioxane antimalarial drug (CDRI 99/411) using an in-house validated in situ single-pass intestinal perfusion model.
    Wahajuddin ; Singh SP; Patel K; Pradhan T; Siddiqui HH; Singh SK
    Arzneimittelforschung; 2011; 61(9):532-7. PubMed ID: 22029231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The low/high BCS permeability class boundary: physicochemical comparison of metoprolol and labetalol.
    Zur M; Gasparini M; Wolk O; Amidon GL; Dahan A
    Mol Pharm; 2014 May; 11(5):1707-14. PubMed ID: 24735251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MRP2 mediated drug-drug interaction: indomethacin increases sulfasalazine absorption in the small intestine, potentially decreasing its colonic targeting.
    Dahan A; Amidon GL
    Int J Pharm; 2010 Feb; 386(1-2):216-20. PubMed ID: 19944137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segmental-dependent membrane permeability along the intestine following oral drug administration: Evaluation of a triple single-pass intestinal perfusion (TSPIP) approach in the rat.
    Dahan A; West BT; Amidon GL
    Eur J Pharm Sci; 2009 Feb; 36(2-3):320-9. PubMed ID: 19028572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circadian variations in exsorptive transport: in situ intestinal perfusion data and in vivo relevance.
    Okyar A; Dressler C; Hanafy A; Baktir G; Lemmer B; Spahn-Langguth H
    Chronobiol Int; 2012 May; 29(4):443-53. PubMed ID: 22489638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The utility of rat jejunal permeability for biopharmaceutics classification system.
    Zakeri-Milani P; Valizadeh H; Tajerzadeh H; Islambulchilar Z
    Drug Dev Ind Pharm; 2009 Dec; 35(12):1496-502. PubMed ID: 19929209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Significance of peptide transporter 1 in the intestinal permeability of valacyclovir in wild-type and PepT1 knockout mice.
    Yang B; Smith DE
    Drug Metab Dispos; 2013 Mar; 41(3):608-14. PubMed ID: 23264448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the human jejunal permeability and fraction absorbed of fluoroquinolones based on a biophysical model.
    Wang C; Avdeef A; Zhang W; Tam KY
    Biomed Mater Eng; 2014; 24(6):3849-54. PubMed ID: 25227102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regional intestinal drug permeation: biopharmaceutics and drug development.
    Lennernäs H
    Eur J Pharm Sci; 2014 Jun; 57():333-41. PubMed ID: 23988845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors influencing regional differences in intestinal absorption of UK-343,664 in rat: possible role in dose-dependent pharmacokinetics.
    Kaddoumi A; Fleisher D; Heimbach T; Li LY; Cole S
    J Pharm Sci; 2006 Feb; 95(2):435-45. PubMed ID: 16381015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intestinal permeability of metformin using single-pass intestinal perfusion in rats.
    Song NN; Li QS; Liu CX
    World J Gastroenterol; 2006 Jul; 12(25):4064-70. PubMed ID: 16810761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biopharmaceutics of successful controlled release drug product: Segmental-dependent permeability of glipizide vs. metoprolol throughout the intestinal tract.
    Zur M; Cohen N; Agbaria R; Dahan A
    Int J Pharm; 2015 Jul; 489(1-2):304-10. PubMed ID: 25957705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.