BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 22524983)

  • 21. Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases.
    Hao B; Oehlmann S; Sowa ME; Harper JW; Pavletich NP
    Mol Cell; 2007 Apr; 26(1):131-43. PubMed ID: 17434132
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Profiling lysine ubiquitination by selective enrichment of ubiquitin remnant-containing peptides.
    Xu G; Deglincerti A; Paige JS; Jaffrey SR
    Methods Mol Biol; 2014; 1174():57-71. PubMed ID: 24947374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unraveling the ubiquitin-regulated signaling networks by mass spectrometry-based proteomics.
    Low TY; Magliozzi R; Guardavaccaro D; Heck AJ
    Proteomics; 2013 Feb; 13(3-4):526-37. PubMed ID: 23019148
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex.
    Li HH; Kedar V; Zhang C; McDonough H; Arya R; Wang DZ; Patterson C
    J Clin Invest; 2004 Oct; 114(8):1058-71. PubMed ID: 15489953
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ubiquitin-conjugating enzyme UBE2D2 is responsible for FBXW2 (F-box and WD repeat domain containing 2)-mediated human GCM1 (glial cell missing homolog 1) ubiquitination and degradation.
    Chiang MH; Chen LF; Chen H
    Biol Reprod; 2008 Nov; 79(5):914-20. PubMed ID: 18703417
    [TBL] [Abstract][Full Text] [Related]  

  • 26. M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP.
    Watanabe N; Arai H; Nishihara Y; Taniguchi M; Watanabe N; Hunter T; Osada H
    Proc Natl Acad Sci U S A; 2004 Mar; 101(13):4419-24. PubMed ID: 15070733
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Arabidopsis COP9 SIGNALOSOME INTERACTING F-BOX KELCH 1 protein forms an SCF ubiquitin ligase and regulates hypocotyl elongation.
    Franciosini A; Lombardi B; Iafrate S; Pecce V; Mele G; Lupacchini L; Rinaldi G; Kondou Y; Gusmaroli G; Aki S; Tsuge T; Deng XW; Matsui M; Vittorioso P; Costantino P; Serino G
    Mol Plant; 2013 Sep; 6(5):1616-29. PubMed ID: 23475998
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aberrant Expression of FBXO2 Disrupts Glucose Homeostasis Through Ubiquitin-Mediated Degradation of Insulin Receptor in Obese Mice.
    Liu B; Lu H; Li D; Xiong X; Gao L; Wu Z; Lu Y
    Diabetes; 2017 Mar; 66(3):689-698. PubMed ID: 27932386
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family.
    Pintard L; Willems A; Peter M
    EMBO J; 2004 Apr; 23(8):1681-7. PubMed ID: 15071497
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphorylation- and Skp1-independent in vitro ubiquitination of E2F1 by multiple ROC-cullin ligases.
    Ohta T; Xiong Y
    Cancer Res; 2001 Feb; 61(4):1347-53. PubMed ID: 11245432
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recognition of substrate and Skp1 by the Homologue of Slimb (HOS) ubiquitin ligase receptor D role of the F-box.
    Herter JR; Fuchs SY
    Med Sci Monit; 2002 Aug; 8(8):BR283-8. PubMed ID: 12165731
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Do F-box proteins with a C-terminal domain homologous with the tobacco lectin play a role in protein degradation in plants?
    Lannoo N; Peumans WJ; Van Damme EJ
    Biochem Soc Trans; 2008 Oct; 36(Pt 5):843-7. PubMed ID: 18793148
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SCF ubiquitin protein ligases and phosphorylation-dependent proteolysis.
    Willems AR; Goh T; Taylor L; Chernushevich I; Shevchenko A; Tyers M
    Philos Trans R Soc Lond B Biol Sci; 1999 Sep; 354(1389):1533-50. PubMed ID: 10582239
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The SCF ubiquitin ligase: insights into a molecular machine.
    Cardozo T; Pagano M
    Nat Rev Mol Cell Biol; 2004 Sep; 5(9):739-51. PubMed ID: 15340381
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular interactions of fission yeast Skp1 and its role in the DNA damage checkpoint.
    Lehmann A; Katayama S; Harrison C; Dhut S; Kitamura K; McDonald N; Toda T
    Genes Cells; 2004 May; 9(5):367-82. PubMed ID: 15147268
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Interaction Landscape of Ubiquitin Signaling.
    Zhang X; Smits AH; van Tilburg GB; Jansen PW; Makowski MM; Ovaa H; Vermeulen M
    Mol Cell; 2017 Mar; 65(5):941-955.e8. PubMed ID: 28190767
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphorylation-dependent ubiquitination of cyclin D1 by the SCF(FBX4-alphaB crystallin) complex.
    Lin DI; Barbash O; Kumar KG; Weber JD; Harper JW; Klein-Szanto AJ; Rustgi A; Fuchs SY; Diehl JA
    Mol Cell; 2006 Nov; 24(3):355-66. PubMed ID: 17081987
    [TBL] [Abstract][Full Text] [Related]  

  • 38. UbiNet: an online resource for exploring the functional associations and regulatory networks of protein ubiquitylation.
    Nguyen VN; Huang KY; Weng JT; Lai KR; Lee TY
    Database (Oxford); 2016; 2016():. PubMed ID: 27114492
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of SCF ubiquitin ligase substrates by global protein stability profiling.
    Yen HC; Elledge SJ
    Science; 2008 Nov; 322(5903):923-9. PubMed ID: 18988848
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ubiquitin ligases and cell cycle control.
    Teixeira LK; Reed SI
    Annu Rev Biochem; 2013; 82():387-414. PubMed ID: 23495935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.