These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
486 related articles for article (PubMed ID: 22525267)
1. Somatic embryogenesis receptor kinases control root development mainly via brassinosteroid-independent actions in Arabidopsis thaliana. Du J; Yin H; Zhang S; Wei Z; Zhao B; Zhang J; Gou X; Lin H; Li J J Integr Plant Biol; 2012 Jun; 54(6):388-99. PubMed ID: 22525267 [TBL] [Abstract][Full Text] [Related]
2. Genetic evidence for an indispensable role of somatic embryogenesis receptor kinases in brassinosteroid signaling. Gou X; Yin H; He K; Du J; Yi J; Xu S; Lin H; Clouse SD; Li J PLoS Genet; 2012 Jan; 8(1):e1002452. PubMed ID: 22253607 [TBL] [Abstract][Full Text] [Related]
3. BAK1 and BKK1 regulate brassinosteroid-dependent growth and brassinosteroid-independent cell-death pathways. He K; Gou X; Yuan T; Lin H; Asami T; Yoshida S; Russell SD; Li J Curr Biol; 2007 Jul; 17(13):1109-15. PubMed ID: 17600708 [TBL] [Abstract][Full Text] [Related]
4. BSKs are partially redundant positive regulators of brassinosteroid signaling in Arabidopsis. Sreeramulu S; Mostizky Y; Sunitha S; Shani E; Nahum H; Salomon D; Hayun LB; Gruetter C; Rauh D; Ori N; Sessa G Plant J; 2013 Jun; 74(6):905-19. PubMed ID: 23496207 [TBL] [Abstract][Full Text] [Related]
5. BAK1 directly regulates brassinosteroid perception and BRI1 activation. He K; Xu S; Li J J Integr Plant Biol; 2013 Dec; 55(12):1264-70. PubMed ID: 24308570 [TBL] [Abstract][Full Text] [Related]
6. A mathematical model for the coreceptors SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 and SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE3 in BRASSINOSTEROID INSENSITIVE1-mediated signaling. van Esse W; van Mourik S; Albrecht C; van Leeuwen J; de Vries S Plant Physiol; 2013 Nov; 163(3):1472-81. PubMed ID: 24072582 [TBL] [Abstract][Full Text] [Related]
7. On the Origin of SERKs: Bioinformatics Analysis of the Somatic Embryogenesis Receptor Kinases. Aan den Toorn M; Albrecht C; de Vries S Mol Plant; 2015 May; 8(5):762-82. PubMed ID: 25864910 [TBL] [Abstract][Full Text] [Related]
8. Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Wang X; Kota U; He K; Blackburn K; Li J; Goshe MB; Huber SC; Clouse SD Dev Cell; 2008 Aug; 15(2):220-35. PubMed ID: 18694562 [TBL] [Abstract][Full Text] [Related]
9. Visualization of BRI1 and BAK1(SERK3) membrane receptor heterooligomers during brassinosteroid signaling. Bücherl CA; van Esse GW; Kruis A; Luchtenberg J; Westphal AH; Aker J; van Hoek A; Albrecht C; Borst JW; de Vries SC Plant Physiol; 2013 Aug; 162(4):1911-25. PubMed ID: 23796795 [TBL] [Abstract][Full Text] [Related]
10. Membrane steroid-binding protein 1 (MSBP1) negatively regulates brassinosteroid signaling by enhancing the endocytosis of BAK1. Song L; Shi QM; Yang XH; Xu ZH; Xue HW Cell Res; 2009 Jul; 19(7):864-76. PubMed ID: 19532123 [TBL] [Abstract][Full Text] [Related]
11. Arabidopsis plant homeodomain finger proteins operate downstream of auxin accumulation in specifying the vasculature and primary root meristem. Thomas CL; Schmidt D; Bayer EM; Dreos R; Maule AJ Plant J; 2009 Aug; 59(3):426-36. PubMed ID: 19392692 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of miR172 suppresses the brassinosteroid signaling defects of bak1 in Arabidopsis. Kim BH; Kwon Y; Lee BH; Nam KH Biochem Biophys Res Commun; 2014 May; 447(3):479-84. PubMed ID: 24732353 [TBL] [Abstract][Full Text] [Related]
13. Identification of in vitro phosphorylation sites in the Arabidopsis thaliana somatic embryogenesis receptor-like kinases. Karlova R; Boeren S; van Dongen W; Kwaaitaal M; Aker J; Vervoort J; de Vries S Proteomics; 2009 Jan; 9(2):368-79. PubMed ID: 19105183 [TBL] [Abstract][Full Text] [Related]
14. Nucleocytoplasmic trafficking is essential for BAK1- and BKK1-mediated cell-death control. Du J; Gao Y; Zhan Y; Zhang S; Wu Y; Xiao Y; Zou B; He K; Gou X; Li G; Lin H; Li J Plant J; 2016 Feb; 85(4):520-31. PubMed ID: 26775605 [TBL] [Abstract][Full Text] [Related]
15. Molecular mechanism for plant steroid receptor activation by somatic embryogenesis co-receptor kinases. Santiago J; Henzler C; Hothorn M Science; 2013 Aug; 341(6148):889-92. PubMed ID: 23929946 [TBL] [Abstract][Full Text] [Related]
16. RLF, a cytochrome b(5)-like heme/steroid binding domain protein, controls lateral root formation independently of ARF7/19-mediated auxin signaling in Arabidopsis thaliana. Ikeyama Y; Tasaka M; Fukaki H Plant J; 2010 Jun; 62(5):865-75. PubMed ID: 20230485 [TBL] [Abstract][Full Text] [Related]
17. Identification of Arabidopsis BAK1-associating receptor-like kinase 1 (BARK1) and characterization of its gene expression and brassinosteroid-regulated root phenotypes. Kim MH; Kim Y; Kim JW; Lee HS; Lee WS; Kim SK; Wang ZY; Kim SH Plant Cell Physiol; 2013 Oct; 54(10):1620-34. PubMed ID: 23921992 [TBL] [Abstract][Full Text] [Related]
18. Interaction between glucose and brassinosteroid during the regulation of lateral root development in Arabidopsis. Gupta A; Singh M; Laxmi A Plant Physiol; 2015 May; 168(1):307-20. PubMed ID: 25810094 [TBL] [Abstract][Full Text] [Related]
19. Brassinosteroids regulate the differential growth of Arabidopsis hypocotyls through auxin signaling components IAA19 and ARF7. Zhou XY; Song L; Xue HW Mol Plant; 2013 May; 6(3):887-904. PubMed ID: 23125315 [TBL] [Abstract][Full Text] [Related]
20. Cytokinin receptors are required for normal development of auxin-transporting vascular tissues in the hypocotyl but not in adventitious roots. Kuroha T; Ueguchi C; Sakakibara H; Satoh S Plant Cell Physiol; 2006 Feb; 47(2):234-43. PubMed ID: 16357038 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]