These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 22525494)

  • 1. A new mechanobiological era: microfluidic pathways to apply and sense forces at the cellular level.
    Kurth F; Eyer K; Franco-Obregón A; Dittrich PS
    Curr Opin Chem Biol; 2012 Aug; 16(3-4):400-8. PubMed ID: 22525494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanobiological modelling of tendons: Review and future opportunities.
    Thompson MS; Bajuri MN; Khayyeri H; Isaksson H
    Proc Inst Mech Eng H; 2017 May; 231(5):369-377. PubMed ID: 28427319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic platforms for mechanobiology.
    Polacheck WJ; Li R; Uzel SG; Kamm RD
    Lab Chip; 2013 Jun; 13(12):2252-67. PubMed ID: 23649165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidics for in vitro biomimetic shear stress-dependent leukocyte adhesion assays.
    Bianchi E; Molteni R; Pardi R; Dubini G
    J Biomech; 2013 Jan; 46(2):276-83. PubMed ID: 23200903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastomeric microposts integrated into microfluidics for flow-mediated endothelial mechanotransduction analysis.
    Lam RH; Sun Y; Chen W; Fu J
    Lab Chip; 2012 Apr; 12(10):1865-73. PubMed ID: 22437210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanobiology of tendon.
    Wang JH
    J Biomech; 2006; 39(9):1563-82. PubMed ID: 16000201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear Dynamic Modelling of Platelet Aggregation via Microfluidic Devices.
    Combariza ME; Yu X; Nesbitt WS; Mitchell A; Tovar-Lopez FJ
    IEEE Trans Biomed Eng; 2015 Jul; 62(7):1718-27. PubMed ID: 25706500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidics as a Strategic Player to Decipher Single-Cell Omics?
    Caen O; Lu H; Nizard P; Taly V
    Trends Biotechnol; 2017 Aug; 35(8):713-727. PubMed ID: 28633993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in electric analysis of cells in microfluidic systems.
    Bao N; Wang J; Lu C
    Anal Bioanal Chem; 2008 Jun; 391(3):933-42. PubMed ID: 18335214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Chondrocyte microenvironment and application of microfluidic chips in constructing chondrocyte microenvironment].
    Zhong W; Zhang W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Jan; 28(1):105-8. PubMed ID: 24693790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Musculoskeletal mechanobiology: interpretation by external force and engineered substratum.
    McCullen SD; Haslauer CM; Loboa EG
    J Biomech; 2010 Jan; 43(1):119-27. PubMed ID: 19815216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic platforms for lab-on-a-chip applications.
    Haeberle S; Zengerle R
    Lab Chip; 2007 Sep; 7(9):1094-110. PubMed ID: 17713606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The in situ mechanics of trabecular bone marrow: the potential for mechanobiological response.
    Metzger TA; Kreipke TC; Vaughan TJ; McNamara LM; Niebur GL
    J Biomech Eng; 2015 Jan; 137(1):. PubMed ID: 25363343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunoassays in microfluidic systems.
    Ng AH; Uddayasankar U; Wheeler AR
    Anal Bioanal Chem; 2010 Jun; 397(3):991-1007. PubMed ID: 20422163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small Force, Big Impact: Next Generation Organ-on-a-Chip Systems Incorporating Biomechanical Cues.
    Ergir E; Bachmann B; Redl H; Forte G; Ertl P
    Front Physiol; 2018; 9():1417. PubMed ID: 30356887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow-induced stress on adherent cells in microfluidic devices.
    Shemesh J; Jalilian I; Shi A; Heng Yeoh G; Knothe Tate ML; Ebrahimi Warkiani M
    Lab Chip; 2015 Nov; 15(21):4114-27. PubMed ID: 26334370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shear stress-dependent cell detachment from temperature-responsive cell culture surfaces in a microfluidic device.
    Tang Z; Akiyama Y; Itoga K; Kobayashi J; Yamato M; Okano T
    Biomaterials; 2012 Oct; 33(30):7405-11. PubMed ID: 22818649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Device-based in vitro techniques for mechanical stimulation of vascular cells: a review.
    Davis CA; Zambrano S; Anumolu P; Allen AC; Sonoqui L; Moreno MR
    J Biomech Eng; 2015 Apr; 137(4):040801. PubMed ID: 25378106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The application of microfluidics in biology.
    Holmes D; Gawad S
    Methods Mol Biol; 2010; 583():55-80. PubMed ID: 19763459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A practical guide to microfluidic perfusion culture of adherent mammalian cells.
    Kim L; Toh YC; Voldman J; Yu H
    Lab Chip; 2007 Jun; 7(6):681-94. PubMed ID: 17538709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.