These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 22525739)

  • 1. Distribution of carbonaceous matter in lithofacies: impacts on HOC sorption nonlinearity.
    Kalinovich I; Allen-King RM; Thomas K
    J Contam Hydrol; 2012 May; 133():84-93. PubMed ID: 22525739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous carbonaceous matter in sedimentary rock lithocomponents causes significant trichloroethylene (TCE) sorption in a low organic carbon content aquifer/aquitard system.
    Choung S; Zimmerman LR; Allen-King RM; Ligouis B; Feenstra S
    J Contam Hydrol; 2014 Oct; 167():23-31. PubMed ID: 25168960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ sorption of hydrophobic organic compounds to sediment amended with activated carbon.
    Kupryianchyk D; Rakowska MI; Grotenhuis JT; Koelmans AA
    Environ Pollut; 2012 Feb; 161():23-9. PubMed ID: 22230063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonideal transport of contaminants in heterogeneous porous media: 10. Impact of co-solutes on sorption by porous media with low organic-carbon contents.
    Brusseau ML; Schnaar G; Johnson GR; Russo AE
    Chemosphere; 2012 Nov; 89(11):1302-6. PubMed ID: 22717163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sorption of chlorophenolates in soils and aquifer and marine sediments.
    Fingler S; Drevenkar V; Fröbe Z
    Arch Environ Contam Toxicol; 2005 Jan; 48(1):32-9. PubMed ID: 15657803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the effect of grain-scale sorption rate limitations on the fate of hydrophobic organic groundwater pollutants.
    Werner D; Karapanagioti HK; Sabatini DA
    J Contam Hydrol; 2012 Mar; 129-130():70-9. PubMed ID: 22118831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PCB congener sorption to carbonaceous sediment components: Macroscopic comparison and characterization of sorption kinetics and mechanism.
    Choi H; Al-Abed SR
    J Hazard Mater; 2009 Jun; 165(1-3):860-6. PubMed ID: 19059706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorption of atrazine and phenanthrene by organic matter fractions in soil and sediment.
    Sun K; Gao B; Zhang Z; Zhang G; Zhao Y; Xing B
    Environ Pollut; 2010 Dec; 158(12):3520-6. PubMed ID: 20855138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption behavior of phenanthrene in Yangtze estuarine sediments: sequential separation.
    Yang Y; Liu M; Wang L; Fu J; Yan C; Zhou JL
    Mar Pollut Bull; 2011 May; 62(5):1025-31. PubMed ID: 21392807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of carbonate and organic matter on sorption and desorption behavior of polycyclic aromatic hydrocarbons in the sediments from Yangtze River.
    Wang L; Niu J; Yang Z; Shen Z; Wang J
    J Hazard Mater; 2008 Jun; 154(1-3):811-7. PubMed ID: 18082945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption of chlorinated solvents and degradation products on natural clayey tills.
    Lu C; Bjerg PL; Zhang F; Broholm MM
    Chemosphere; 2011 Jun; 83(11):1467-74. PubMed ID: 21459403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of sorption processes on PCE concentrations in organohalide-respiring aquifer sediment samples.
    Leitner S; Reichenauer TG; Watzinger A
    Sci Total Environ; 2018 Feb; 615():1061-1069. PubMed ID: 29751409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorption of endocrine disrupting chemicals by condensed organic matter in soils and sediments.
    Sun K; Gao B; Zhang Z; Zhang G; Liu X; Zhao Y; Xing B
    Chemosphere; 2010 Aug; 80(7):709-15. PubMed ID: 20579690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption and desorption hysteresis of organic contaminants by kerogen in a sandy aquifer material.
    Ran Y; Xiao B; Fu J; Sheng G
    Chemosphere; 2003 Mar; 50(10):1365-76. PubMed ID: 12586168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlations of nonlinear sorption of organic solutes with soil/sediment physicochemical properties.
    Yang K; Zhu L; Lou B; Chen B
    Chemosphere; 2005 Sep; 61(1):116-28. PubMed ID: 16157174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kerogen in aquifer material and its strong sorption for nonionic organic pollutants.
    Ran Y; Xiao B; Huang W; Peng P; Liu D; Fu J; Sheng G
    J Environ Qual; 2003; 32(5):1701-9. PubMed ID: 14535311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of bisphenol-A in sandy aquifer sediment: Column experiment.
    Zakari S; Liu H; Tong L; Wang Y; Liu J
    Chemosphere; 2016 Feb; 144():1807-14. PubMed ID: 26539704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of sorption coefficients of pharmaceutically active substances carbamazepine, diclofenac, and ibuprofen, in sandy sediments.
    Scheytt T; Mersmann P; Lindstädt R; Heberer T
    Chemosphere; 2005 Jul; 60(2):245-53. PubMed ID: 15914244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction capacity characterization of shallow sedimentary deposits in geologically different regions of the Netherlands.
    Griffioen J; Klein J; van Gaans PF
    J Contam Hydrol; 2012 Jan; 127(1-4):30-46. PubMed ID: 21549444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of competing inorganic cations on the ion exchange equilibrium of the monovalent organic cation metoprolol on natural sediment.
    Niedbala A; Schaffer M; Licha T; Nödler K; Börnick H; Ruppert H; Worch E
    Chemosphere; 2013 Feb; 90(6):1945-51. PubMed ID: 23159068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.