These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 2252670)

  • 1. Computer simulation of the circulatory system during support with a rotary blood pump.
    Schima H; Honigschnabel J; Trubel W; Thoma H
    ASAIO Trans; 1990; 36(3):M252-4. PubMed ID: 2252670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a reliable automatic speed control system for rotary blood pumps.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    J Heart Lung Transplant; 2005 Nov; 24(11):1878-85. PubMed ID: 16297795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Technical requirements and limitations of miniaturized axial flow pumps for circulatory support.
    Reul H
    Cardiology; 1994; 84(3):187-93. PubMed ID: 8205568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impeller-pump model derived from conservation laws applied to the simulation of the cardiovascular system coupled to heart-assist pumps.
    Shi Y; Korakianitis T
    Comput Biol Med; 2018 Feb; 93():127-138. PubMed ID: 29304409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of left ventricular assist device performance and hydraulic force in a complete mock circulation loop.
    Timms D; Hayne M; Tan A; Pearcy M
    Artif Organs; 2005 Jul; 29(7):573-80. PubMed ID: 15982286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anatomy and Physiology of Left Ventricular Suction Induced by Rotary Blood Pumps.
    Salamonsen RF; Lim E; Moloney J; Lovell NH; Rosenfeldt FL
    Artif Organs; 2015 Aug; 39(8):681-90. PubMed ID: 26146861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive physiological speed/flow control of rotary blood pumps in permanent implantation using intrinsic pump parameters.
    Wu Y
    ASAIO J; 2009; 55(4):335-9. PubMed ID: 19506462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Outflow control for avoiding atrial suction in a continuous flow total artificial heart.
    Olegario PS; Yoshizawa M; Tanaka A; Abe K; Takeda H; Yambe T; Nitta S
    Artif Organs; 2003 Jan; 27(1):92-8. PubMed ID: 12534719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A control system for rotary blood pumps based on suction detection.
    Ferreira A; Boston JR; Antaki JF
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):656-65. PubMed ID: 19272919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a pump flow estimator for rotary blood pumps to enhance monitoring of ventricular function.
    Granegger M; Moscato F; Casas F; Wieselthaler G; Schima H
    Artif Organs; 2012 Aug; 36(8):691-9. PubMed ID: 22882439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological control of dual rotary pumps as a biventricular assist device using a master/slave approach.
    Stevens MC; Wilson S; Bradley A; Fraser J; Timms D
    Artif Organs; 2014 Sep; 38(9):766-74. PubMed ID: 24749848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A sophisticated electromechanical ventricular simulator for ventricular assist system testing.
    Woodard JC; Rock SM; Portner PM
    ASAIO Trans; 1991; 37(3):M210-1. PubMed ID: 1751115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A compliant, banded outflow cannula for decreased afterload sensitivity of rotary right ventricular assist devices.
    Gregory SD; Schummy E; Pearcy M; Pauls JP; Tansley G; Fraser JF; Timms D
    Artif Organs; 2015 Feb; 39(2):102-9. PubMed ID: 25041754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pulsatile control algorithm of continuous-flow pump for heart recovery.
    Gao B; Chang Y; Gu K; Zeng Y; Liu Y
    ASAIO J; 2012; 58(4):343-52. PubMed ID: 22576238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulsatile control of rotary blood pumps: Does the modulation waveform matter?
    Pirbodaghi T; Axiak S; Weber A; Gempp T; Vandenberghe S
    J Thorac Cardiovasc Surg; 2012 Oct; 144(4):970-7. PubMed ID: 22418246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiologic control algorithms for rotary blood pumps using pressure sensor input.
    Bullister E; Reich S; Sluetz J
    Artif Organs; 2002 Nov; 26(11):931-8. PubMed ID: 12406146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemodynamic response to exercise and head-up tilt of patients implanted with a rotary blood pump: a computational modeling study.
    Lim E; Salamonsen RF; Mansouri M; Gaddum N; Mason DG; Timms DL; Stevens MC; Fraser J; Akmeliawati R; Lovell NH
    Artif Organs; 2015 Feb; 39(2):E24-35. PubMed ID: 25345482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance prediction of a percutaneous ventricular assist system using nonlinear circuit analysis techniques.
    Yu YC; Simaan MA; Mushi SE; Zorn NV
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):419-29. PubMed ID: 18269977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Research on Control of the Cardiovascular System Based on a Left Ventricular Assist Device].
    Wang F; Xu Q; Wu Z; Wen T; Ji J; He Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Dec; 33(6):1075-83. PubMed ID: 29714970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cavopulmonary mechanical circulatory support in Fontan patients and the need for physiologic control: A computational study with a closed-loop exercise model.
    Granegger M; Schweiger M; Schmid Daners M; Meboldt M; Hübler M
    Int J Artif Organs; 2018 May; 41(5):261-268. PubMed ID: 29521133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.