BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 22526734)

  • 1. Subharmonic distortion in ear canal pressure and intracochlear pressure and motion.
    Huang S; Dong W; Olson ES
    J Assoc Res Otolaryngol; 2012 Aug; 13(4):461-71. PubMed ID: 22526734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of forward (ear-canal) and reverse (round-window) sound stimulation of the cochlea.
    Stieger C; Rosowski JJ; Nakajima HH
    Hear Res; 2013 Jul; 301():105-14. PubMed ID: 23159918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds.
    Greene NT; Jenkins HA; Tollin DJ; Easter JR
    Hear Res; 2017 May; 348():16-30. PubMed ID: 28189837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cochlear Implant Electrode Effect on Sound Energy Transfer Within the Cochlea During Acoustic Stimulation.
    Greene NT; Mattingly JK; Jenkins HA; Tollin DJ; Easter JR; Cass SP
    Otol Neurotol; 2015 Sep; 36(9):1554-61. PubMed ID: 26333018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Comparison of differental intracochlear pressures between round window stimulation and ear canal stimulation].
    Wang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Dec; 29(6):1109-13. PubMed ID: 23469540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of sound transmission from ear canal to cochlea.
    Gan RZ; Reeves BP; Wang X
    Ann Biomed Eng; 2007 Dec; 35(12):2180-95. PubMed ID: 17882549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous measurements of ossicular velocity and intracochlear pressure leading to the cochlear input impedance in gerbil.
    de la Rochefoucauld O; Decraemer WF; Khanna SM; Olson ES
    J Assoc Res Otolaryngol; 2008 Jun; 9(2):161-77. PubMed ID: 18459001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermodulation distortion in the cochlea: could basal vibration be the major cause of round window CM distortion?
    Brown AM; Kemp DT
    Hear Res; 1985; 19(3):191-8. PubMed ID: 4066519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
    Maier H; Salcher R; Schwab B; Lenarz T
    Hear Res; 2013 Jul; 301():115-24. PubMed ID: 23276731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential intracochlear sound pressure measurements in normal human temporal bones.
    Nakajima HH; Dong W; Olson ES; Merchant SN; Ravicz ME; Rosowski JJ
    J Assoc Res Otolaryngol; 2009 Mar; 10(1):23-36. PubMed ID: 19067078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast reverse propagation of sound in the living cochlea.
    He W; Fridberger A; Porsov E; Ren T
    Biophys J; 2010 Jun; 98(11):2497-505. PubMed ID: 20513393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impedances of the inner and middle ear estimated from intracochlear sound pressures in normal human temporal bones.
    Frear DL; Guan X; Stieger C; Rosowski JJ; Nakajima HH
    Hear Res; 2018 Sep; 367():17-31. PubMed ID: 30015103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sheep as a large animal ear model: Middle-ear ossicular velocities and intracochlear sound pressure.
    Péus D; Dobrev I; Prochazka L; Thoele K; Dalbert A; Boss A; Newcomb N; Probst R; Röösli C; Sim JH; Huber A; Pfiffner F
    Hear Res; 2017 Aug; 351():88-97. PubMed ID: 28601531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sound pressures in the basal turn of the cat cochlea.
    Nedzelnitsky V
    J Acoust Soc Am; 1980 Dec; 68(6):1676-89. PubMed ID: 7462467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ear canal acoustic and round window electrical correlates of 2f1-f2 distortion generated in the cochlea.
    Kemp DT; Brown AM
    Hear Res; 1984 Jan; 13(1):39-46. PubMed ID: 6706861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reverse transmission along the ossicular chain in gerbil.
    Dong W; Decraemer WF; Olson ES
    J Assoc Res Otolaryngol; 2012 Aug; 13(4):447-59. PubMed ID: 22466074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observing middle and inner ear mechanics with novel intracochlear pressure sensors.
    Olson ES
    J Acoust Soc Am; 1998 Jun; 103(6):3445-63. PubMed ID: 9637031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Middle ear forward and reverse transmission in gerbil.
    Dong W; Olson ES
    J Neurophysiol; 2006 May; 95(5):2951-61. PubMed ID: 16481455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time measurement of stapes motion and intracochlear pressure during blast exposure.
    Bien AG; Jiang S; Gan RZ
    Hear Res; 2023 Mar; 429():108702. PubMed ID: 36669259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sound pressure distribution and power flow within the gerbil ear canal from 100 Hz to 80 kHz.
    Ravicz ME; Olson ES; Rosowski JJ
    J Acoust Soc Am; 2007 Oct; 122(4):2154-73. PubMed ID: 17902852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.