These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 22526784)
1. Rhizocompetence and antagonistic activity towards genetically diverse Ralstonia solanacearum strains--an improved strategy for selecting biocontrol agents. Xue QY; Ding GC; Li SM; Yang Y; Lan CZ; Guo JH; Smalla K Appl Microbiol Biotechnol; 2013 Feb; 97(3):1361-71. PubMed ID: 22526784 [TBL] [Abstract][Full Text] [Related]
2. Isolation and screening of phlD (+) plant growth promoting rhizobacteria antagonistic to Ralstonia solanacearum. Ramadasappa S; Rai AK; Jaat RS; Singh A; Rai R World J Microbiol Biotechnol; 2012 Apr; 28(4):1681-90. PubMed ID: 22805950 [TBL] [Abstract][Full Text] [Related]
3. [Identification, colonization and disease prevention capacity of an antagonistic bacterium against Ralstonia Solanacearum]. Li Z; Zhu H Wei Sheng Wu Xue Bao; 2010 Mar; 50(3):342-9. PubMed ID: 20499639 [TBL] [Abstract][Full Text] [Related]
4. Endophytes from Gnetum gnemon L. can protect seedlings against the infection of phytopathogenic bacterium Ralstonia solanacearum as well as promote plant growth in tomato. Agarwal H; Dowarah B; Baruah PM; Bordoloi KS; Krishnatreya DB; Agarwala N Microbiol Res; 2020 Sep; 238():126503. PubMed ID: 32497966 [TBL] [Abstract][Full Text] [Related]
5. Comparison of bacterial communities in soil samples with and without tomato bacterial wilt caused by Ralstonia solanacearum species complex. Zhang Y; Hu A; Zhou J; Zhang W; Li P BMC Microbiol; 2020 Apr; 20(1):89. PubMed ID: 32290811 [TBL] [Abstract][Full Text] [Related]
6. A polyphasic approach for studying the interaction between Ralstonia solanacearum and potential control agents in the tomato phytosphere. van Overbeek LS; Cassidy M; Kozdroj J; Trevors JT; van Elsas JD J Microbiol Methods; 2002 Jan; 48(1):69-86. PubMed ID: 11733083 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of biofilm formation by Cd Yang W; Yan H; Zhang J; Gao Y; Xu W; Shang J; Luo Y Microbiol Res; 2018 Oct; 215():1-6. PubMed ID: 30172295 [TBL] [Abstract][Full Text] [Related]
8. Draft genome sequence of Brevibacillus brevis strain X23, a biocontrol agent against bacterial wilt. Chen W; Wang Y; Li D; Li L; Xiao Q; Zhou Q J Bacteriol; 2012 Dec; 194(23):6634-5. PubMed ID: 23144389 [TBL] [Abstract][Full Text] [Related]
9. Specific and sensitive detection of Ralstonia solanacearum in soil on the basis of PCR amplification of fliC fragments. Schönfeld J; Heuer H; Van Elsas JD; Smalla K Appl Environ Microbiol; 2003 Dec; 69(12):7248-56. PubMed ID: 14660373 [TBL] [Abstract][Full Text] [Related]
10. Antagonistic bacterium Bacillus amyloliquefaciens induces resistance and controls the bacterial wilt of tomato. Tan S; Dong Y; Liao H; Huang J; Song S; Xu Y; Shen Q Pest Manag Sci; 2013 Nov; 69(11):1245-52. PubMed ID: 23519834 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of tomato bacterial wilt suppression in soil amended with lysine. Posas MB; Toyota K Microbes Environ; 2010; 25(2):83-94. PubMed ID: 21576858 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of seed associated endophytic bacteria from tolerant chilli cv. Firingi Jolokia for their biocontrol potential against bacterial wilt disease. Dowarah B; Agarwal H; Krishnatreya DB; Sharma PL; Kalita N; Agarwala N Microbiol Res; 2021 Jul; 248():126751. PubMed ID: 33839507 [TBL] [Abstract][Full Text] [Related]
13. Potential use of soilborne lytic Podoviridae phage as a biocontrol agent against Ralstonia solanacearum. Elhalag K; Nasr-Eldin M; Hussien A; Ahmad A J Basic Microbiol; 2018 Aug; 58(8):658-669. PubMed ID: 29938804 [TBL] [Abstract][Full Text] [Related]
14. The in planta transcriptome of Ralstonia solanacearum: conserved physiological and virulence strategies during bacterial wilt of tomato. Jacobs JM; Babujee L; Meng F; Milling A; Allen C mBio; 2012; 3(4):. PubMed ID: 22807564 [TBL] [Abstract][Full Text] [Related]
15. Microbial efficacy as biological agents for potato enrichment as well as bio-controls against wilt disease caused by Ralstonia solanacearum. Elazouni I; Abdel-Aziz S; Rabea A World J Microbiol Biotechnol; 2019 Jan; 35(2):30. PubMed ID: 30689124 [TBL] [Abstract][Full Text] [Related]
16. Isolation and identification of NEAU-CP5: A seed-endophytic strain of B. velezensis that controls tomato bacterial wilt. Bing H; Qi C; Gu J; Zhao T; Yu X; Cai Y; Zhang Y; Li A; Wang X; Zhao J; Xiang W Microb Pathog; 2024 Jul; 192():106707. PubMed ID: 38777241 [TBL] [Abstract][Full Text] [Related]
17. Phage combination therapies for bacterial wilt disease in tomato. Wang X; Wei Z; Yang K; Wang J; Jousset A; Xu Y; Shen Q; Friman VP Nat Biotechnol; 2019 Dec; 37(12):1513-1520. PubMed ID: 31792408 [TBL] [Abstract][Full Text] [Related]
18. Biocontrol potential of a lytic bacteriophage PE204 against bacterial wilt of tomato. Bae JY; Wu J; Lee HJ; Jo EJ; Murugaiyan S; Chung E; Lee SW J Microbiol Biotechnol; 2012 Dec; 22(12):1613-20. PubMed ID: 23221522 [TBL] [Abstract][Full Text] [Related]
19. Strategy to select and assess antagonistic bacteria for biological control of Rhizoctonia solani Kühn. Faltin F; Lottmann J; Grosch R; Berg G Can J Microbiol; 2004 Oct; 50(10):811-20. PubMed ID: 15644895 [TBL] [Abstract][Full Text] [Related]
20. Isolation of Ralstonia solanacearum-infecting bacteriophages from tomato fields in Chiang Mai, Thailand, and their experimental use as biocontrol agents. Bhunchoth A; Phironrit N; Leksomboon C; Chatchawankanphanich O; Kotera S; Narulita E; Kawasaki T; Fujie M; Yamada T J Appl Microbiol; 2015 Apr; 118(4):1023-33. PubMed ID: 25619754 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]