These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22526806)

  • 1. Metabolic pathway analysis of Scheffersomyces (Pichia) stipitis: effect of oxygen availability on ethanol synthesis and flux distributions.
    Unrean P; Nguyen NH
    Appl Microbiol Biotechnol; 2012 Jun; 94(5):1387-98. PubMed ID: 22526806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of aeration on growth, ethanol and polyol accumulation by Spathaspora passalidarum NRRL Y-27907 and Scheffersomyces stipitis NRRL Y-7124.
    Su YK; Willis LB; Jeffries TW
    Biotechnol Bioeng; 2015 Mar; 112(3):457-69. PubMed ID: 25164099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational optimization of culture conditions for the most efficient ethanol production in Scheffersomyces stipitis using design of experiments.
    Unrean P; Nguyen NH
    Biotechnol Prog; 2012; 28(5):1119-25. PubMed ID: 22753371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimized fed-batch fermentation of Scheffersomyces stipitis for efficient production of ethanol from hexoses and pentoses.
    Unrean P; Nguyen NH
    Appl Biochem Biotechnol; 2013 Mar; 169(6):1895-909. PubMed ID: 23344940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the bioethanol production potential of Scheffersomyces (Pichia) stipitis using validated genome-scale model.
    Parambil LK; Sarkar D
    Biotechnol Lett; 2014 Dec; 36(12):2443-51. PubMed ID: 25129048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethanol production by a new pentose-fermenting yeast strain, Scheffersomyces stipitis UFMG-IMH 43.2, isolated from the Brazilian forest.
    Ferreira AD; Mussatto SI; Cadete RM; Rosa CA; Silva SS
    Yeast; 2011 Jul; 28(7):547-54. PubMed ID: 21626536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insertional tagging of the Scheffersomyces stipitis gene HEM25 involved in regulation of glucose and xylose alcoholic fermentation.
    Berezka K; Semkiv M; Borbuliak M; Blomqvist J; Linder T; Ruchała J; Dmytruk K; Passoth V; Sibirny A
    Cell Biol Int; 2021 Mar; 45(3):507-517. PubMed ID: 31829471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ethanol production from wheat straw by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture in batch and continuous system.
    Karagöz P; Özkan M
    Bioresour Technol; 2014 Apr; 158():286-93. PubMed ID: 24614063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repression of xylose-specific enzymes by ethanol in Scheffersomyces (Pichia) stipitis and utility of repitching xylose-grown populations to eliminate diauxic lag.
    Slininger PJ; Thompson SR; Weber S; Liu ZL; Moon J
    Biotechnol Bioeng; 2011 Aug; 108(8):1801-15. PubMed ID: 21370229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative assessment of fermentative capacity of different xylose-consuming yeasts.
    Veras HCT; Parachin NS; Almeida JRM
    Microb Cell Fact; 2017 Sep; 16(1):153. PubMed ID: 28903764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.
    Jeppsson M; Bengtsson O; Franke K; Lee H; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Biotechnol Bioeng; 2006 Mar; 93(4):665-73. PubMed ID: 16372361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A physiological and enzymatic study of Debaryomyces hansenii growth on xylose- and oxygen-limited chemostats.
    Nobre A; Duarte LC; Roseiro JC; Gírio FM
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):509-16. PubMed ID: 12172618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of UV-C mutagenized Scheffersomyces stipitis strains for ethanol production.
    Geiger M; Gibbons J; West T; Hughes SR; Gibbons W
    J Lab Autom; 2012 Dec; 17(6):417-24. PubMed ID: 22786982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis.
    Balagurunathan B; Jonnalagadda S; Tan L; Srinivasan R
    Microb Cell Fact; 2012 Feb; 11():27. PubMed ID: 22356827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Online monitoring of the redox potential in microaerobic and anaerobic Scheffersomyces stipitis fermentations.
    Bonan CIDG; Biazi LE; Santos SC; Soares LB; Dionísio SR; Hoffmam ZB; Costa AC; Ienczak JL
    Biotechnol Lett; 2019 Jul; 41(6-7):753-761. PubMed ID: 30963342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathway analysis of Pichia pastoris to elucidate methanol metabolism and its regulation for production of recombinant proteins.
    Unrean P
    Biotechnol Prog; 2014; 30(1):28-37. PubMed ID: 24376216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering.
    Lee KS; Hong ME; Jung SC; Ha SJ; Yu BJ; Koo HM; Park SM; Seo JH; Kweon DH; Park JC; Jin YS
    Biotechnol Bioeng; 2011 Mar; 108(3):621-31. PubMed ID: 21246509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Breeding of Actinobacillus succiniogenes mutants with improved succinate production based on metabolic flux analysis].
    Pan L; Li X; Jiang S; Wei Z; Chen X; Cai L; Wang H; Jiang J
    Sheng Wu Gong Cheng Xue Bao; 2008 Sep; 24(9):1595-603. PubMed ID: 19160843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of cytochrome bc1 complex inhibition during fermentation and growth of Scheffersomyces stipitis using glucose, xylose or arabinose as carbon sources.
    Granados-Arvizu JA; Madrigal-Perez LA; Canizal-García M; González-Hernández JC; García-Almendárez BE; Regalado-González C
    FEMS Yeast Res; 2019 Mar; 19(2):. PubMed ID: 30500899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Random UV-C mutagenesis of Scheffersomyces (formerly Pichia) stipitis NRRL Y-7124 to improve anaerobic growth on lignocellulosic sugars.
    Hughes SR; Gibbons WR; Bang SS; Pinkelman R; Bischoff KM; Slininger PJ; Qureshi N; Kurtzman CP; Liu S; Saha BC; Jackson JS; Cotta MA; Rich JO; Javers JE
    J Ind Microbiol Biotechnol; 2012 Jan; 39(1):163-73. PubMed ID: 21748309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.