These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 22526885)

  • 1. Two types of extracellular action potentials recorded with narrow-tipped pipettes in skeletal muscle of frog, Rana temporaria.
    Kubasov IV; Dobretsov M
    J Physiol; 2012 Jun; 590(12):2937-44. PubMed ID: 22526885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effect of barium and ouabain on electrogenesis in various sites of intact and detubulated skeletal muscle fibers of the frog R. temporaria].
    Kubasov IV; Dobretsov MG
    Zh Evol Biokhim Fiziol; 2012; 48(4):360-6. PubMed ID: 23013024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Investigation and analysis of chloride channels distribution over the surface and T-tubule membranes of frog skeletal muscle].
    Kubasov IV; Arutiunian RS
    Ross Fiziol Zh Im I M Sechenova; 2012 Sep; 98(9):1149-58. PubMed ID: 23293819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detubulation experiments localise delayed rectifier currents to the surface membrane of amphibian skeletal muscle fibres.
    Yee Chin J; Matthews HR; Fraser JA; Skepper JN; Chawla S; Huang CL
    J Muscle Res Cell Motil; 2004; 25(4-5):389-95. PubMed ID: 15548868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Characteristics of spreading action recorded in various sites of skeletal muscle fibers of the frog Rana temporaria].
    Kubasov I; Dobretsov MG
    Zh Evol Biokhim Fiziol; 2011; 47(5):414-6. PubMed ID: 22145325
    [No Abstract]   [Full Text] [Related]  

  • 6. Normal conduction of surface action potentials in detubulated amphibian skeletal muscle fibres.
    Sheikh SM; Skepper JN; Chawla S; Vandenberg JI; Elneil S; Huang CL
    J Physiol; 2001 Sep; 535(Pt 2):579-90. PubMed ID: 11533146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longitudinal and transversal propagation of excitation along the tubular system of rat fast-twitch muscle fibres studied by high speed confocal microscopy.
    Edwards JN; Cully TR; Shannon TR; Stephenson DG; Launikonis BS
    J Physiol; 2012 Feb; 590(3):475-92. PubMed ID: 22155929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of glycerol treatment on the calcium current of frog skeletal muscle.
    Siri LN; Sánchez JA; Stefani E
    J Physiol; 1980 Aug; 305():87-96. PubMed ID: 6969308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Ca2+]i following extrasystoles in guinea-pig trabeculae microinjected with fluo-3 - a comparison with frog skeletal muscle fibres.
    Wohlfart B
    Acta Physiol Scand; 2000 May; 169(1):1-11. PubMed ID: 10759605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stretch- and stimulation frequency-induced changes in extracellular action potentials of muscle fibres during continuous activity.
    Mileva K; Vydevska M; Radicheva N
    J Muscle Res Cell Motil; 1998 Jan; 19(1):95-103. PubMed ID: 9477381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular recording of localized electrical activity in denervated frog slow muscle fibres.
    Lehouelleur J; Schmidt H
    Proc R Soc Lond B Biol Sci; 1980 Sep; 209(1176):403-13. PubMed ID: 6109288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parapodial swim muscle in Aplysia brasiliana. I. Voltage-gated membrane currents in isolated muscle fibers.
    Laurienti PJ; Blankenship JE
    J Neurophysiol; 1996 Sep; 76(3):1517-30. PubMed ID: 8890271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of 9-anthracene carbonic acid on the contractile and electric parameters of the frog (Rana temporaria) skeletal muscle fibers.
    Kubasov IV; Arutyunyan RS
    Dokl Biol Sci; 2013 Mar; 449():93-5. PubMed ID: 23652436
    [No Abstract]   [Full Text] [Related]  

  • 14. Voltage-gated potassium channels activated during action potentials in layer V neocortical pyramidal neurons.
    Kang J; Huguenard JR; Prince DA
    J Neurophysiol; 2000 Jan; 83(1):70-80. PubMed ID: 10634854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacological analysis of voltage-dependent potassium currents in cultured skeletal myocytes of the frog Rana temporaria.
    Lukyanenko V; Katina IE; Nasledov GA; Terentyev DA
    Gen Physiol Biophys; 1995 Dec; 14(6):525-34. PubMed ID: 8773494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of 4-aminopyridine on the excitation-contraction coupling in frog and rat skeletal muscle.
    Khan AR; Edman KA
    Acta Physiol Scand; 1979 Apr; 105(4):443-52. PubMed ID: 313138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A potential- and time-dependent blockade of inward rectification in frog skeletal muscle fibres by barium and strontium ions.
    Standen NB; Stanfield PR
    J Physiol; 1978 Jul; 280():169-91. PubMed ID: 308537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alterations in action potential profile enhance excitation-contraction coupling in rat cardiac myocytes.
    Sah R; Ramirez RJ; Kaprielian R; Backx PH
    J Physiol; 2001 May; 533(Pt 1):201-14. PubMed ID: 11351028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synchronous oscillations of length and stiffness during loaded shortening of frog muscle fibres.
    Edman KA; Curtin NA
    J Physiol; 2001 Jul; 534(Pt. 2):553-63. PubMed ID: 11454972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of muscle-specific features in cultured frog embryonic skeletal myocytes.
    Nasledov GA; Katina IE; Terentyev DA; Tomilin NV; Lukyanenko VI
    J Muscle Res Cell Motil; 1999 Aug; 20(5-6):517-27. PubMed ID: 10555070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.