These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 22526943)

  • 1. One meadow for two sparrows: resource partitioning in a high elevation habitat.
    Beaulieu M; Sockman KW
    Oecologia; 2012 Oct; 170(2):529-40. PubMed ID: 22526943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of data on avian demographics and site persistence during overwintering to assess quality of restored riparian habitat.
    Latta SC; Howell CA; Dettling MD; Cormier RL
    Conserv Biol; 2012 Jun; 26(3):482-92. PubMed ID: 22443304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable isotopes document seasonal changes in trophic niches and winter foraging individual specialization in diving predators from the Southern Ocean.
    Cherel Y; Hobson KA; Guinet C; Vanpe C
    J Anim Ecol; 2007 Jul; 76(4):826-36. PubMed ID: 17584388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Song competition affects monoamine levels in sensory and motor forebrain regions of male Lincoln's sparrows (Melospiza lincolnii).
    Sewall KB; Caro SP; Sockman KW
    PLoS One; 2013; 8(3):e59857. PubMed ID: 23555809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Year-round at-sea distribution and trophic resources partitioning between two sympatric Sulids in the tropical Atlantic.
    Almeida N; Ramos JA; Rodrigues I; Dos Santos I; Pereira JM; Matos DM; Araújo PM; Geraldes P; Melo T; Paiva VH
    PLoS One; 2021; 16(6):e0253095. PubMed ID: 34153067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Female Lincoln's sparrows modulate their behavior in response to variation in male song quality.
    Caro SP; Sewall KB; Salvante KG; Sockman KW
    Behav Ecol; 2010 May; 21(3):562-569. PubMed ID: 22476505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resource partitioning among avian predators of the Arctic tundra.
    Seyer Y; Gauthier G; Fauteux D; Therrien JF
    J Anim Ecol; 2020 Dec; 89(12):2934-2945. PubMed ID: 32965060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmentally driven sexual segregation in a marine top predator.
    Paiva VH; Pereira J; Ceia FR; Ramos JA
    Sci Rep; 2017 Jun; 7(1):2590. PubMed ID: 28572630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Food partitioning and diet temporal variation in two coexisting sparids, Pagellus erythrinus and Pagellus acarne.
    Fanelli E; Badalamenti F; D'Anna G; Pipitone C; Riginella E; Azzurro E
    J Fish Biol; 2011 Mar; 78(3):869-900. PubMed ID: 21366579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Annual variation in vocal performance and its relationship with bill morphology in Lincoln's sparrows.
    Sockman KW
    Anim Behav; 2009 Mar; 77(3):663-671. PubMed ID: 20160859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trophic niche partitioning between two prey and their incidental predators revealed various threats for an endangered species.
    Rioux È; Pelletier F; St-Laurent MH
    Ecol Evol; 2022 Mar; 12(3):e8742. PubMed ID: 35342591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limited trophic partitioning among sympatric delphinids off a tropical oceanic atoll.
    Young H; Nigro K; McCauley DJ; Ballance LT; Oleson EM; Baumann-Pickering S
    PLoS One; 2017; 12(8):e0181526. PubMed ID: 28767677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seasonal plasticity of the song control system in wild Nuttall's white-crowned sparrows.
    Brenowitz EA; Baptista LF; Lent K; Wingfield JC
    J Neurobiol; 1998 Jan; 34(1):69-82. PubMed ID: 9469619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spawning salmon disrupt trophic coupling between wolves and ungulate prey in coastal British Columbia.
    Darimont CT; Paquet PC; Reimchen TE
    BMC Ecol; 2008 Sep; 8():14. PubMed ID: 18764930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High inter- and intraspecific niche overlap among three sympatrically breeding, closely related seabird species: Generalist foraging as an adaptation to a highly variable environment?
    Dehnhard N; Achurch H; Clarke J; Michel LN; Southwell C; Sumner MD; Eens M; Emmerson L
    J Anim Ecol; 2020 Jan; 89(1):104-119. PubMed ID: 31368149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic analysis of interspecific competition using foraging trade-offs: implications for duck assemblages.
    Gurd DB
    Ecology; 2008 Feb; 89(2):495-505. PubMed ID: 18409438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the structure and temporal dynamics of seabird communities: the challenge of capturing marine ecosystem complexity.
    Moreno R; Stowasser G; McGill RA; Bearhop S; Phillips RA
    J Anim Ecol; 2016 Jan; 85(1):199-212. PubMed ID: 26439671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Characterization of trophic position of red-crowned crane (Grus japonensis) influenced by the food resource exhausting].
    Luo JM; Wang YJ; Wang WF; Gao ZY
    Ying Yong Sheng Tai Xue Bao; 2017 Jul; 28(7):2315-2320. PubMed ID: 29741065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beyond trophic morphology: stable isotopes reveal ubiquitous versatility in marine turtle trophic ecology.
    Figgener C; Bernardo J; Plotkin PT
    Biol Rev Camb Philos Soc; 2019 Dec; 94(6):1947-1973. PubMed ID: 31338959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Foraging depth depicts resource partitioning and contamination level in a pelagic shark assemblage: Insights from mercury stable isotopes.
    Besnard L; Le Croizier G; Galván-Magaña F; Point D; Kraffe E; Ketchum J; Martinez Rincon RO; Schaal G
    Environ Pollut; 2021 Aug; 283():117066. PubMed ID: 33892372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.