These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 22527012)

  • 61. Experimental investigation of unsteady flow behaviour within a sac-type ventricular assist device (VAD).
    Jin W; Clark C
    J Biomech; 1993 Jun; 26(6):697-707. PubMed ID: 8514814
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Velocity measurements and flow patterns within the hinge region of a Medtronic Parallel bileaflet mechanical valve with clear housing.
    Ellis JT; Healy TM; Fontaine AA; Saxena R; Yoganathan AP
    J Heart Valve Dis; 1996 Nov; 5(6):591-9. PubMed ID: 8953436
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Particle image velocimetry tests on pediatric 45-cc and 30-cc ventricle assist devices: effects of heart rate on VAD operation.
    Witkowski D; Obidowski D; Reorowicz P; Jodko D; Jozwik K
    Int J Artif Organs; 2017 Oct; 40(10):558-562. PubMed ID: 28708210
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Fluid Dynamic Study of the Penn State Pediatric Total Artificial Heart.
    Kubicki C; Raich E; Selinsky P; Ponnaluri S; Weiss WJ; Manning KB
    J Biomech Eng; 2024 Oct; 146(10):. PubMed ID: 38652582
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Particle image velocimetry for flow analysis in longitudinal planes across a mechanical artificial heart valve.
    Castellini P; Pinotti M; Scalise L
    Artif Organs; 2004 May; 28(5):507-13. PubMed ID: 15113347
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Flow study on a newly developed impeller for a left ventricular assist device.
    Hsu CH
    J Artif Organs; 2003; 6(2):92-100. PubMed ID: 14598109
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A novel subcutaneous counterpulsation device: acute hemodynamic efficacy during pharmacologically induced hypertension, hypotension, and heart failure.
    Bartoli CR; Wilson GC; Giridharan GA; Slaughter MS; Sherwood LC; Spence PA; Prabhu SD; Koenig SC
    Artif Organs; 2010 Jul; 34(7):537-45. PubMed ID: 20560924
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Mean flow velocity patterns within a ventricular assist device.
    Baldwin JT; Tarbell JM; Deutsch S; Geselowitz DB
    ASAIO Trans; 1989; 35(3):429-33. PubMed ID: 2597496
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Flow field analysis in a compliant acinus replica model using particle image velocimetry (PIV).
    Berg EJ; Weisman JL; Oldham MJ; Robinson RJ
    J Biomech; 2010 Apr; 43(6):1039-47. PubMed ID: 20116064
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Experimental study on the Reynolds and viscous shear stress of bileaflet mechanical heart valves in a pneumatic ventricular assist device.
    Lee H; Tatsumi E; Taenaka Y
    ASAIO J; 2009; 55(4):348-54. PubMed ID: 19521236
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A tensor-based measure for estimating blood damage.
    Arora D; Behr M; Pasquali M
    Artif Organs; 2004 Nov; 28(11):1002-15. PubMed ID: 15504116
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Investigation and visualization of internal flow through particle aggregates and microbial flocs using particle image velocimetry.
    Xiao F; Lam KM; Li XY
    J Colloid Interface Sci; 2013 May; 397():163-8. PubMed ID: 23465191
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Fluid dynamic optimization of a ventricular assist device using particle image velocimetry.
    Mussivand T; Day KD; Naber BC
    ASAIO J; 1999; 45(1):25-31. PubMed ID: 9952002
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Experimental Study of Micro-Scale Taylor Vortices Within a Co-Axial Mixed-Flow Blood Pump.
    Shu F; Tian R; Vandenberghe S; Antaki JF
    Artif Organs; 2016 Nov; 40(11):1071-1078. PubMed ID: 26713514
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A Novel Plasma-Based Fluid for Particle Image Velocimetry (PIV): In-Vitro Feasibility Study of Flow Diverter Effects in Aneurysm Model.
    Clauser J; Knieps MS; Büsen M; Ding A; Schmitz-Rode T; Steinseifer U; Arens J; Cattaneo G
    Ann Biomed Eng; 2018 Jun; 46(6):841-848. PubMed ID: 29488139
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Fluid dynamic analysis of the 50 cc Penn State artificial heart under physiological operating conditions using particle image velocimetry.
    Hochareon P; Manning KB; Fontaine AA; Tarbell JM; Deutsch S
    J Biomech Eng; 2004 Oct; 126(5):585-93. PubMed ID: 15648811
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Stereoscopic particle image velocimetry measurements of the three-dimensional flow field of a descending autorotating mahogany seed (Swietenia macrophylla).
    Salcedo E; Treviño C; Vargas RO; Martínez-Suástegui L
    J Exp Biol; 2013 Jun; 216(Pt 11):2017-30. PubMed ID: 23430990
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Ghost Cell Suspensions as Blood Analogue Fluid for Macroscopic Particle Image Velocimetry Measurements.
    Jansen SV; Müller I; Nachtsheim M; Schmitz-Rode T; Steinseifer U
    Artif Organs; 2016 Feb; 40(2):207-12. PubMed ID: 25997837
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The application of quantitative oil streaking to the HeartQuest left ventricular assist device.
    Lemire PP; McDaniel JC; Wood HG; Allaire PE; Landrot N; Song X; Day SW; Olsen D
    Artif Organs; 2002 Nov; 26(11):971-3. PubMed ID: 12406154
    [TBL] [Abstract][Full Text] [Related]  

  • 80. 4-D Echo-Particle Image Velocimetry in a Left Ventricular Phantom.
    Voorneveld J; Saaid H; Schinkel C; Radeljic N; Lippe B; Gijsen FJH; van der Steen AFW; de Jong N; Claessens T; Vos HJ; Kenjeres S; Bosch JG
    Ultrasound Med Biol; 2020 Mar; 46(3):805-817. PubMed ID: 31924419
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.