These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 22527051)

  • 61. Soil microorganisms control plant ectoparasitic nematodes in natural coastal foredunes.
    Piśkiewicz AM; Duyts H; Berg MP; Costa SR; van der Putten WH
    Oecologia; 2007 Jun; 152(3):505-14. PubMed ID: 17345102
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Evolutionary dynamics of interactions between plants and their enemies: comparison of herbivorous insects and pathogens.
    Wininger K; Rank N
    Ann N Y Acad Sci; 2017 Nov; 1408(1):46-60. PubMed ID: 29125186
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effects of carbon dioxide on the searching behaviour of the root-feeding clover weevil Sitona lepidus (Coleoptera: Curculionidae).
    Johnson SN; Zhang XX; Crawford JW; Gregory PJ; Hix NJ; Jarvis SC; Murray PJ; Young IM
    Bull Entomol Res; 2006 Aug; 96(4):361-6. PubMed ID: 16923203
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Plant-nematode interactions: environmental signals detected by the nematode's chemosensory organs control changes in the surface cuticle and behaviour.
    Curtis RH
    Parasite; 2008 Sep; 15(3):310-6. PubMed ID: 18814700
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Experience-based modulation of behavioural responses to plant volatiles and other sensory cues in insect herbivores.
    Anderson P; Anton S
    Plant Cell Environ; 2014 Aug; 37(8):1826-35. PubMed ID: 24689897
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A tritrophic signal that attracts parasitoids to host-damaged plants withstands disruption by non-host herbivores.
    Erb M; Foresti N; Turlings TC
    BMC Plant Biol; 2010 Nov; 10():247. PubMed ID: 21078181
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Direct and indirect chemical defences against insects in a multitrophic framework.
    Gols R
    Plant Cell Environ; 2014 Aug; 37(8):1741-52. PubMed ID: 24588731
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The specificity of herbivore-induced plant volatiles in attracting herbivore enemies.
    Clavijo McCormick A; Unsicker SB; Gershenzon J
    Trends Plant Sci; 2012 May; 17(5):303-10. PubMed ID: 22503606
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Soil moisture conditions alter behavior of entomopathogenic nematodes.
    Frankenstein D; Luu MS; Luna-Ayala J; Willett DS; Filgueiras CS
    J Sci Food Agric; 2024 May; 104(7):4383-4390. PubMed ID: 38323469
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The Multifunctional Roles of Polyphenols in Plant-Herbivore Interactions.
    Singh S; Kaur I; Kariyat R
    Int J Mol Sci; 2021 Feb; 22(3):. PubMed ID: 33535511
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Nematode feeding sites: unique organs in plant roots.
    Kyndt T; Vieira P; Gheysen G; de Almeida-Engler J
    Planta; 2013 Nov; 238(5):807-18. PubMed ID: 23824525
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Subterranean, herbivore-induced plant volatile increases biological control activity of multiple beneficial nematode species in distinct habitats.
    Ali JG; Alborn HT; Campos-Herrera R; Kaplan F; Duncan LW; Rodriguez-Saona C; Koppenhöfer AM; Stelinski LL
    PLoS One; 2012; 7(6):e38146. PubMed ID: 22761668
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Caterpillar-induced nocturnal plant volatiles repel conspecific females.
    De Moraes CM; Mescher MC; Tumlinson JH
    Nature; 2001 Mar; 410(6828):577-80. PubMed ID: 11279494
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Aboveground and Belowground Herbivores Synergistically Induce Volatile Organic Sulfur Compound Emissions from Shoots but Not from Roots.
    Danner H; Brown P; Cator EA; Harren FJ; van Dam NM; Cristescu SM
    J Chem Ecol; 2015 Jul; 41(7):631-40. PubMed ID: 26195194
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Evaluating insect-microbiomes at the plant-insect interface.
    Casteel CL; Hansen AK
    J Chem Ecol; 2014 Jul; 40(7):836-47. PubMed ID: 25052911
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Plant defense against herbivores: chemical aspects.
    Mithöfer A; Boland W
    Annu Rev Plant Biol; 2012; 63():431-50. PubMed ID: 22404468
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Microbiota, pathogens, and parasites as mediators of tritrophic interactions between insect herbivores, plants, and pollinators.
    Mogren CL; Shikano I
    J Invertebr Pathol; 2021 Nov; 186():107589. PubMed ID: 33865846
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Herbivore induced plant volatiles: their role in plant defense for pest management.
    War AR; Sharma HC; Paulraj MG; War MY; Ignacimuthu S
    Plant Signal Behav; 2011 Dec; 6(12):1973-8. PubMed ID: 22105032
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Finish line plant-insect interactions mediated by insect feeding mode and plant interference: a case study of Brassica interactions with diamondback moth and turnip aphid.
    Soufbaf M; Fathipour Y; Harvey JA; Hui C
    Insect Sci; 2018 Aug; 25(4):690-702. PubMed ID: 28092131
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Leachates from plants recently infected by root-feeding nematodes cause increased biomass allocation to roots in neighbouring plants.
    Zhang P; Bonte D; De Deyn GB; Vandegehuchte ML
    Sci Rep; 2021 Jan; 11(1):2347. PubMed ID: 33504859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.