These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 22527055)
1. Occurrence of sarmentosin and other hydroxynitrile glucosides in Parnassius (papilionidae) butterflies and their food plants. Bjarnholt N; Nakonieczny M; Kędziorski A; Debinski DM; Matter SF; Olsen CE; Zagrobelny M J Chem Ecol; 2012 May; 38(5):525-37. PubMed ID: 22527055 [TBL] [Abstract][Full Text] [Related]
2. The dynamics of cyanide defences in the life cycle of an aposematic butterfly: Biosynthesis versus sequestration. Pinheiro de Castro ÉC; Demirtas R; Orteu A; Olsen CE; Motawie MS; Zikan Cardoso M; Zagrobelny M; Bak S Insect Biochem Mol Biol; 2020 Jan; 116():103259. PubMed ID: 31698083 [TBL] [Abstract][Full Text] [Related]
3. Glucosinolate-related glucosides in Alliaria petiolata: sources of variation in the plant and different metabolism in an adapted specialist herbivore, Pieris rapae. Frisch T; Agerbirk N; Davis S; Cipollini D; Olsen CE; Motawia MS; Bjarnholt N; Møller BL J Chem Ecol; 2014 Oct; 40(10):1063-79. PubMed ID: 25308480 [TBL] [Abstract][Full Text] [Related]
4. Diversification of an ancient theme: hydroxynitrile glucosides. Bjarnholt N; Rook F; Motawia MS; Cornett C; Jørgensen C; Olsen CE; Jaroszewski JW; Bak S; Møller BL Phytochemistry; 2008 May; 69(7):1507-16. PubMed ID: 18342345 [TBL] [Abstract][Full Text] [Related]
5. Feeding preferences of the Apollo butterfly (Parnassius apollo ssp. frankenbergeri) larvae inhabiting the Pieniny Mts (southern Poland). Nakonieczny M; Kedziorski A C R Biol; 2005 Mar; 328(3):235-42. PubMed ID: 15810547 [TBL] [Abstract][Full Text] [Related]
6. Sequestration, tissue distribution and developmental transmission of cyanogenic glucosides in a specialist insect herbivore. Zagrobelny M; Olsen CE; Pentzold S; Fürstenberg-Hägg J; Jørgensen K; Bak S; Møller BL; Motawia MS Insect Biochem Mol Biol; 2014 Jan; 44():44-53. PubMed ID: 24269868 [TBL] [Abstract][Full Text] [Related]
7. Cyanogenic glucosides and plant-insect interactions. Zagrobelny M; Bak S; Rasmussen AV; Jørgensen B; Naumann CM; Lindberg Møller B Phytochemistry; 2004 Feb; 65(3):293-306. PubMed ID: 14751300 [TBL] [Abstract][Full Text] [Related]
8. Cyanogenesis in Arthropods: From Chemical Warfare to Nuptial Gifts. Zagrobelny M; de Castro ÉCP; Møller BL; Bak S Insects; 2018 May; 9(2):. PubMed ID: 29751568 [TBL] [Abstract][Full Text] [Related]
9. Cyanogenic glucosides in the biological warfare between plants and insects: the Burnet moth-Birdsfoot trefoil model system. Zagrobelny M; Møller BL Phytochemistry; 2011 Sep; 72(13):1585-92. PubMed ID: 21429539 [TBL] [Abstract][Full Text] [Related]
10. The cyanogenic glucoside composition of Zygaena filipendulae (Lepidoptera: Zygaenidae) as effected by feeding on wild-type and transgenic lotus populations with variable cyanogenic glucoside profiles. Zagrobelny M; Bak S; Ekstrøm CT; Olsen CE; Møller BL Insect Biochem Mol Biol; 2007 Jan; 37(1):10-8. PubMed ID: 17175442 [TBL] [Abstract][Full Text] [Related]
11. Sequestration and biosynthesis of cyanogenic glucosides in passion vine butterflies and consequences for the diversification of their host plants. Pinheiro de Castro ÉC; Zagrobelny M; Zurano JP; Zikan Cardoso M; Feyereisen R; Bak S Ecol Evol; 2019 May; 9(9):5079-5093. PubMed ID: 31110663 [TBL] [Abstract][Full Text] [Related]
12. Lesions in the wingless gene of the Apollo butterfly (Parnassius apollo, Lepidoptera: Papilionidae) individuals with deformed or reduced wings, coming from the isolated population in Pieniny (Poland). Łukasiewicz K; Sanak M; Węgrzyn G Gene; 2016 Feb; 576(2 Pt 2):820-2. PubMed ID: 26581509 [TBL] [Abstract][Full Text] [Related]
13. Changes is genes coding for laccases 1 and 2 may contribute to deformation and reduction of wings in apollo butterfly (Parnassius apollo, Lepidoptera: Papilionidae) from the isolated population in Pieniny National Park (Poland). Łukasiewicz K; Węgrzyn G Acta Biochim Pol; 2016; 63(1):177-180. PubMed ID: 26523407 [TBL] [Abstract][Full Text] [Related]
14. 454 pyrosequencing based transcriptome analysis of Zygaena filipendulae with focus on genes involved in biosynthesis of cyanogenic glucosides. Zagrobelny M; Scheibye-Alsing K; Jensen NB; Møller BL; Gorodkin J; Bak S BMC Genomics; 2009 Dec; 10():574. PubMed ID: 19954531 [TBL] [Abstract][Full Text] [Related]
15. The arms race between heliconiine butterflies and Passiflora plants - new insights on an ancient subject. de Castro ÉCP; Zagrobelny M; Cardoso MZ; Bak S Biol Rev Camb Philos Soc; 2018 Feb; 93(1):555-573. PubMed ID: 28901723 [TBL] [Abstract][Full Text] [Related]
17. Chemical defense balanced by sequestration and de novo biosynthesis in a lepidopteran specialist. Fürstenberg-Hägg J; Zagrobelny M; Jørgensen K; Vogel H; Møller BL; Bak S PLoS One; 2014; 9(10):e108745. PubMed ID: 25299618 [TBL] [Abstract][Full Text] [Related]
18. Molecular systematics and evolution of the recently discovered "Parnassian" butterfly (Parnassius davydovi Churkin, 2006) and its allied species (Lepidoptera, Papilionidae). Omoto K; Yonezawa T; Shinkawa T Gene; 2009 Jul; 441(1-2):80-8. PubMed ID: 19059318 [TBL] [Abstract][Full Text] [Related]
19. De novo synthesis vs. sequestration: negatively correlated metabolic traits and the evolution of host plant specialization in cyanogenic butterflies. Engler-Chaouat HS; Gilbert LE J Chem Ecol; 2007 Jan; 33(1):25-42. PubMed ID: 17151910 [TBL] [Abstract][Full Text] [Related]
20. Midgut glycosidases activities in monophagous larvae of Apollo butterfly, Parnassius apollo ssp. frankenbergeri. Nakonieczny M; Michalczyk K; Kedziorski A C R Biol; 2006 Oct; 329(10):765-74. PubMed ID: 17027637 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]