These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 22527056)

  • 1. Estimating insect flight densities from attractive trap catches and flight height distributions.
    Byers JA
    J Chem Ecol; 2012 May; 38(5):592-601. PubMed ID: 22527056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of vertical distributions and effective flight layers of insects: three-dimensional simulation of flying insects and catch at trap heights.
    Byers JA
    Environ Entomol; 2011 Oct; 40(5):1210-22. PubMed ID: 22251732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling distributions of flying insects: effective attraction radius of pheromone in two and three dimensions.
    Byers JA
    J Theor Biol; 2009 Jan; 256(1):81-9. PubMed ID: 18845163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active space of pheromone plume and its relationship to effective attraction radius in applied models.
    Byers JA
    J Chem Ecol; 2008 Sep; 34(9):1134-45. PubMed ID: 18584255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective attraction radius : A method for comparing species attractants and determining densities of flying insects.
    Byers JA; Anderbrant O; Löqvist J
    J Chem Ecol; 1989 Feb; 15(2):749-65. PubMed ID: 24271814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sharpening the Precision of Pest Management Decisions: Assessing Variability Inherent in Catch Number and Absolute Density Estimates Derived from Pheromone-Baited Traps Monitoring Insects Moving Randomly.
    Miller JR
    J Econ Entomol; 2020 Oct; 113(5):2052-2060. PubMed ID: 32754751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring and mass-trapping methodologies using pheromones: the lesser date moth Batrachedra amydraula.
    Levi-Zada A; Sadowsky A; Dobrinin S; Ticuchinski T; David M; Fefer D; Dunkelblum E; Byers JA
    Bull Entomol Res; 2018 Feb; 108(1):58-68. PubMed ID: 28490389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated flight-interception traps for interval sampling of insects.
    Bolliger J; Collet M; Hohl M; Obrist MK
    PLoS One; 2020; 15(7):e0229476. PubMed ID: 32649703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of mating disruption and mass trapping with competitive attraction and camouflage.
    Byers JA
    Environ Entomol; 2007 Dec; 36(6):1328-38. PubMed ID: 18284760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation and equation models of insect population control by pheromone-baited traps.
    Byers JA
    J Chem Ecol; 1993 Sep; 19(9):1939-56. PubMed ID: 24249370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation Modeling to Interpret the Captures of Moths in Pheromone-Baited Traps Used for Surveillance of Invasive Species: the Gypsy Moth as a Model Case.
    Bau J; Cardé RT
    J Chem Ecol; 2016 Sep; 42(9):877-887. PubMed ID: 27663859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attraction of the Euwallacea sp. near fornicatus (Coleoptera: Curculionidae) to Quercivorol and to Infestations in Avocado.
    Byers JA; Maoz Y; Levi-Zada A
    J Econ Entomol; 2017 Aug; 110(4):1512-1517. PubMed ID: 28541523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing monitoring techniques for the invasive goldspotted oak borer (Coleoptera: Buprestidae) in California.
    Coleman TW; Chen Y; Graves AD; Hishinuma SM; Grulke NE; Flint ML; Seybold SJ
    Environ Entomol; 2014 Jun; 43(3):729-43. PubMed ID: 24755194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of pheromone lure and trap characteristics for currant clearwing, Synanthedon tipuliformis.
    Suckling DM; Gibb AR; Burnip GM; Snelling C; de Ruiter J; Langford G; El-Sayed AM
    J Chem Ecol; 2005 Feb; 31(2):393-406. PubMed ID: 15856791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling push-pull management of pest insects using repellents and attractive traps in fruit tree orchards.
    Byers JA; Levi-Zada A
    Pest Manag Sci; 2022 Aug; 78(8):3630-3637. PubMed ID: 35598065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficacy of pheromone trapping of the sweetpotato weevil (Coleoptera: Brentidae): based on dose, septum age, attractive radius, and mass trapping.
    Reddy GV; Wu S; Mendi RC; Miller RH
    Environ Entomol; 2014 Jun; 43(3):767-73. PubMed ID: 24709382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of vertical-looking radar to continuously monitor the insect fauna flying at altitude over southern England.
    Smith AD; Reynolds DR; Riley JR
    Bull Entomol Res; 2000 Jun; 90(3):265-77. PubMed ID: 10996867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Traps and attractants for wood-boring insects in ponderosa pine stands in the Black Hills, South Dakota.
    Costello SL; Negrón JF; Jacobi WR
    J Econ Entomol; 2008 Apr; 101(2):409-20. PubMed ID: 18459406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Index of host habitat preference explored by movement-based simulations and trap captures.
    Byers JA; Sadowsky A; Levi Zada A
    J Anim Ecol; 2018 Sep; 87(5):1320-1330. PubMed ID: 29938788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uraba lugens (Lepidoptera: Nolidae) in New Zealand: pheromone trapping for delimitation and phenology.
    Suckling DM; Gibb AR; Dentener PR; Seldon DS; Clare GK; Jamieson L; Baird D; Kriticos DJ; El-Sayed AM
    J Econ Entomol; 2005 Aug; 98(4):1187-92. PubMed ID: 16156570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.