These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 2252724)

  • 41. Bulk mass transport limitations during high-flux hemodialysis.
    Zydney AL
    Artif Organs; 1993 Nov; 17(11):919-24. PubMed ID: 8110060
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Increasing dialysate flow rate increases dialyzer urea mass transfer-area coefficients during clinical use.
    Ouseph R; Ward RA
    Am J Kidney Dis; 2001 Feb; 37(2):316-20. PubMed ID: 11157372
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Solute transport in continuous arteriovenous hemodiafiltration: a new mathematical model applied to clinical data.
    Vincent HH; van Ittersum FJ; Akcahuseyin E; Vos MC; van Duyl WA; Schalekamp MA
    Blood Purif; 1990; 8(3):149-59. PubMed ID: 2244992
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Impact of convective transport on dialyzer clearance.
    Galach M; Ciechanowska A; Sabalińska S; Waniewski J; Wójcicki J; Weryńskis A
    J Artif Organs; 2003; 6(1):42-8. PubMed ID: 14598124
    [TBL] [Abstract][Full Text] [Related]  

  • 45. pO2 and pCO2 increment in post-dialyzer blood: the role of dialysate.
    Sombolos KI; Bamichas GI; Christidou FN; Gionanlis LD; Karagianni AC; Anagnostopoulos TC; Natse TA
    Artif Organs; 2005 Nov; 29(11):892-8. PubMed ID: 16266303
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A model to predict optimal dialysate flow.
    Alayoud A; Benyahia M; Montassir D; Hamzi A; Zajjari Y; Bahadi A; El Kabbaj D; Maoujoud O; Aatif T; Hassani K; Oualim Z
    Ther Apher Dial; 2012 Apr; 16(2):152-8. PubMed ID: 22458394
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High peritoneal residual volume decreases the efficiency of peritoneal dialysis.
    Wang T; Cheng HH; Heimbürger O; Bergström J; Lindholm B
    Kidney Int; 1999 May; 55(5):2040-8. PubMed ID: 10231469
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimisation of solute transport in dialysers using a three-dimensional finite volume model.
    Eloot S; Vierendeels J; Verdonck P
    Comput Methods Biomech Biomed Engin; 2006 Dec; 9(6):363-70. PubMed ID: 17145670
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Convection-enhanced high-flux hemodialysis.
    Lee K; Jeong JH; Mun CH; Lee SR; Yoo KJ; Park YW; Won YS; Min BG
    Artif Organs; 2007 Aug; 31(8):653-8. PubMed ID: 17651122
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cytokine production in haemodiafiltration: a multicentre study.
    Panichi V; De Pietro S; Andreini B; Migliori M; Tessore V; Taccola D; Rindi P; Palla R; Tetta C
    Nephrol Dial Transplant; 1998 Jul; 13(7):1737-44. PubMed ID: 9681721
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Finite-element modeling of time-dependent sodium exchange across the hollow fiber of a hemodialyzer by coupling with a blood pool model.
    Ravagli E; Grandi E; Rovatti P; Severi S
    Int J Artif Organs; 2016 Nov; 39(9):471-478. PubMed ID: 27834449
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Paired filtration dialysis: studies on efficiency, flow dynamics and hydraulic properties of the system.
    Ronco C; Feriani M; Brendolan A; Chiaramonte S; Milan M; Dell'Aquila R; Scabardi M; Bragantini L; Conz P; La Greca G
    Blood Purif; 1990; 8(3):126-40. PubMed ID: 2244990
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Blood and dialysate flow distributions in hollow-fiber hemodialyzers analyzed by computerized helical scanning technique.
    Ronco C; Brendolan A; Crepaldi C; Rodighiero M; Scabardi M
    J Am Soc Nephrol; 2002 Jan; 13 Suppl 1():S53-61. PubMed ID: 11792763
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Computer simulations of osmotic ultrafiltration and small-solute transport in peritoneal dialysis: a spatially distributed approach.
    Stachowska-Pietka J; Waniewski J; Flessner MF; Lindholm B
    Am J Physiol Renal Physiol; 2012 May; 302(10):F1331-41. PubMed ID: 22301624
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Longitudinal relationship between solute transport and ultrafiltration capacity in peritoneal dialysis patients.
    Davies SJ
    Kidney Int; 2004 Dec; 66(6):2437-45. PubMed ID: 15569337
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Regulatory mechanisms of erythropoietin levels in dialysis patients.
    Tagawa H; Umezu M; Saito T; Yamakado M; Nagano M; Urabe A; Takaku F
    Nihon Jinzo Gakkai Shi; 1990 Mar; 32(3):297-303. PubMed ID: 2355666
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Downloadable computer models for renal replacement therapy.
    Walther JL; Bartlett DW; Chew W; Robertson CR; Hostetter TH; Meyer TW
    Kidney Int; 2006 Mar; 69(6):1056-63. PubMed ID: 16528255
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Peritoneal equilibrium test with hypertonic exchange: practical application in a peritoneal dialysis program].
    Ortiz A; Marrón B; Berlanga JR; Reyero A; Gazapo R
    Nefrologia; 2001; 21(4):362-9. PubMed ID: 11816512
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Backfiltration: a controversial issue in modern dialysis.
    Ronco C
    Int J Artif Organs; 1988 Mar; 11(2):69-74. PubMed ID: 3372053
    [No Abstract]   [Full Text] [Related]  

  • 60. Comparison of polymer, glucose, and hydrostatic pressure induced ultrafiltration in a hollow fiber dialyzer: effects on convective solute transport.
    Twardowski Z; Nolph KD; Popovich R; Hopkins CA
    J Lab Clin Med; 1978 Oct; 92(4):619-33. PubMed ID: 712199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.