BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 22527251)

  • 1. Controlled-rate freezer cryopreservation of highly concentrated peripheral blood mononuclear cells results in higher cell yields and superior autologous T-cell stimulation for dendritic cell-based immunotherapy.
    Buhl T; Legler TJ; Rosenberger A; Schardt A; Schön MP; Haenssle HA
    Cancer Immunol Immunother; 2012 Nov; 61(11):2021-31. PubMed ID: 22527251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cryopreservation of high concentrated PBMC for dendritic cell (DC)-based cancer immunotherapy.
    Heo YJ; Son CH; Chung JS; Park YS; Son JH
    Cryobiology; 2009 Apr; 58(2):203-9. PubMed ID: 19152796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale immunomagnetic selection of CD14+ monocytes to generate dendritic cells for cancer immunotherapy: a phase I study.
    Babatz J; Röllig C; Oelschlägel U; Zhao S; Ehninger G; Schmitz M; Bornhäuser M
    J Hematother Stem Cell Res; 2003 Oct; 12(5):515-23. PubMed ID: 14594508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryopreservation of monocytes is superior to cryopreservation of immature or semi-mature dendritic cells for dendritic cell-based immunotherapy.
    Hayden H; Friedl J; Dettke M; Sachet M; Hassler M; Dubsky P; Bachleitner-Hofmann T; Gnant M; Stift A
    J Immunother; 2009; 32(6):638-54. PubMed ID: 19483645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method for the production of cryopreserved aliquots of antigen-preloaded, mature dendritic cells ready for clinical use.
    Feuerstein B; Berger TG; Maczek C; Röder C; Schreiner D; Hirsch U; Haendle I; Leisgang W; Glaser A; Kuss O; Diepgen TL; Schuler G; Schuler-Thurner B
    J Immunol Methods; 2000 Nov; 245(1-2):15-29. PubMed ID: 11042280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cryopreservation method of human peripheral blood mononuclear cells for efficient production of dendritic cells.
    Makino M; Baba M
    Scand J Immunol; 1997 Jun; 45(6):618-22. PubMed ID: 9201301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. mRNA-electroporated mature dendritic cells retain transgene expression, phenotypical properties and stimulatory capacity after cryopreservation.
    Ponsaerts P; Van Tendeloo VF; Cools N; Van Driessche A; Lardon F; Nijs G; Lenjou M; Mertens G; Van Broeckhoven C; Van Bockstaele DR; Berneman ZN
    Leukemia; 2002 Jul; 16(7):1324-30. PubMed ID: 12094257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical-grade manufacturing of autologous mature mRNA-electroporated dendritic cells and safety testing in acute myeloid leukemia patients in a phase I dose-escalation clinical trial.
    Van Driessche A; Van de Velde AL; Nijs G; Braeckman T; Stein B; De Vries JM; Berneman ZN; Van Tendeloo VF
    Cytotherapy; 2009; 11(5):653-68. PubMed ID: 19530029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freezing of dendritic cells, generated from cryopreserved leukaphereses, does not influence their ability to induce antigen-specific immune responses or functionally react to maturation stimuli.
    Lewalle P; Rouas R; Lehmann F; Martiat P
    J Immunol Methods; 2000 Jun; 240(1-2):69-78. PubMed ID: 10854602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature fluctuations during deep temperature cryopreservation reduce PBMC recovery, viability and T-cell function.
    Germann A; Oh YJ; Schmidt T; Schön U; Zimmermann H; von Briesen H
    Cryobiology; 2013 Oct; 67(2):193-200. PubMed ID: 23850825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards a xeno-free and fully chemically defined cryopreservation medium for maintaining viability, recovery, and antigen-specific functionality of PBMC during long-term storage.
    Schulz JC; Germann A; Kemp-Kamke B; Mazzotta A; von Briesen H; Zimmermann H
    J Immunol Methods; 2012 Aug; 382(1-2):24-31. PubMed ID: 22580762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryopreservation of peripheral blood mononuclear cells using uncontrolled rate freezing.
    Zeng G; Hu Y; Hu X; Zeng W; Liang X; Liu Y; Peng H; Liao Y; Ren Y; Tang Z; Ding H; Wu J; Zhang X; Wu S; Liu M
    Cell Tissue Bank; 2020 Dec; 21(4):631-641. PubMed ID: 32809089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leukoreduction system chambers are an efficient, valid, and economic source of functional monocyte-derived dendritic cells and lymphocytes.
    Pfeiffer IA; Zinser E; Strasser E; Stein MF; Dörrie J; Schaft N; Steinkasserer A; Knippertz I
    Immunobiology; 2013 Nov; 218(11):1392-401. PubMed ID: 23932569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of cryopreservation on immune responses: VI. An inexpensive method for freezing human peripheral blood mononuclear cells.
    Venkataraman M
    J Clin Lab Immunol; 1992; 37(3):133-43. PubMed ID: 1340509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro production of dendritic cells from human blood monocytes for therapeutic use.
    Garderet L; Cao H; Salamero J; Vergé V; Tisserand E; Scholl S; Gorin NC; Lopez M
    J Hematother Stem Cell Res; 2001 Aug; 10(4):553-67. PubMed ID: 11522238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryopreservation of mature monocyte-derived human dendritic cells for vaccination: influence on phenotype and functional properties.
    Westermann J; Körner IJ; Kopp J; Kurz S; Zenke M; Dörken B; Pezzutto A
    Cancer Immunol Immunother; 2003 Mar; 52(3):194-8. PubMed ID: 12649749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freezing of dendritic cells with trehalose as an additive in the conventional freezing medium results in improved recovery after cryopreservation.
    Shinde P; Khan N; Melinkeri S; Kale V; Limaye L
    Transfusion; 2019 Feb; 59(2):686-696. PubMed ID: 30456902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maximizing the retention of antigen specific lymphocyte function after cryopreservation.
    Disis ML; dela Rosa C; Goodell V; Kuan LY; Chang JC; Kuus-Reichel K; Clay TM; Kim Lyerly H; Bhatia S; Ghanekar SA; Maino VC; Maecker HT
    J Immunol Methods; 2006 Jan; 308(1-2):13-8. PubMed ID: 16337957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of leukapheresis protocol, cell processing and cryopreservation on the generation of monocyte-derived DC for immune therapy.
    Tazbirkova A; Okai M; Horley DC; Crough TM; Maksoud A; Nieda M; Nicol AJ
    Cytotherapy; 2003; 5(1):31-9. PubMed ID: 12745589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryopreservation of monocytes or differentiated immature DCs leads to an altered cytokine response to TLR agonists and microbial stimulation.
    Meijerink M; Ulluwishewa D; Anderson RC; Wells JM
    J Immunol Methods; 2011 Oct; 373(1-2):136-42. PubMed ID: 21878338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.