These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
404 related articles for article (PubMed ID: 22527365)
1. An anisotropic elastic-viscoplastic damage model for bone tissue. Schwiedrzik JJ; Zysset PK Biomech Model Mechanobiol; 2013 Apr; 12(2):201-13. PubMed ID: 22527365 [TBL] [Abstract][Full Text] [Related]
2. A three-dimensional elastic plastic damage constitutive law for bone tissue. Garcia D; Zysset PK; Charlebois M; Curnier A Biomech Model Mechanobiol; 2009 Apr; 8(2):149-65. PubMed ID: 18398628 [TBL] [Abstract][Full Text] [Related]
3. A finite element model for direction-dependent mechanical response to nanoindentation of cortical bone allowing for anisotropic post-yield behavior of the tissue. Carnelli D; Gastaldi D; Sassi V; Contro R; Ortiz C; Vena P J Biomech Eng; 2010 Aug; 132(8):081008. PubMed ID: 20670057 [TBL] [Abstract][Full Text] [Related]
4. Elastic-viscoplastic modeling of soft biological tissues using a mixed finite element formulation based on the relative deformation gradient. Weickenmeier J; Jabareen M Int J Numer Method Biomed Eng; 2014 Nov; 30(11):1238-62. PubMed ID: 24817477 [TBL] [Abstract][Full Text] [Related]
5. Nanoindentation testing and finite element simulations of cortical bone allowing for anisotropic elastic and inelastic mechanical response. Carnelli D; Lucchini R; Ponzoni M; Contro R; Vena P J Biomech; 2011 Jul; 44(10):1852-8. PubMed ID: 21570077 [TBL] [Abstract][Full Text] [Related]
6. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Sun W; Sacks MS Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264 [TBL] [Abstract][Full Text] [Related]
7. A novel approach to estimate trabecular bone anisotropy using a database approach. Hazrati Marangalou J; Ito K; Cataldi M; Taddei F; van Rietbergen B J Biomech; 2013 Sep; 46(14):2356-62. PubMed ID: 23972430 [TBL] [Abstract][Full Text] [Related]
8. A new constitutive model for simulation of softening, plateau, and densification phenomena for trabecular bone under compression. Lee CS; Lee JM; Youn B; Kim HS; Shin JK; Goh TS; Lee JS J Mech Behav Biomed Mater; 2017 Jan; 65():213-223. PubMed ID: 27592290 [TBL] [Abstract][Full Text] [Related]
9. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament. Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853 [TBL] [Abstract][Full Text] [Related]
10. A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue. Bischoff JE; Arruda EM; Grosh K Biomech Model Mechanobiol; 2004 Sep; 3(1):56-65. PubMed ID: 15278837 [TBL] [Abstract][Full Text] [Related]
11. Constitutive modelling of inelastic behaviour of cortical bone. Natali AN; Carniel EL; Pavan PG Med Eng Phys; 2008 Sep; 30(7):905-12. PubMed ID: 18207444 [TBL] [Abstract][Full Text] [Related]
12. A viscoelastic, viscoplastic model of cortical bone valid at low and high strain rates. Johnson TP; Socrate S; Boyce MC Acta Biomater; 2010 Oct; 6(10):4073-80. PubMed ID: 20417735 [TBL] [Abstract][Full Text] [Related]
13. Numerical modelling of cancellous bone damage using an orthotropic failure criterion and tissue elastic properties as a function of the mineral content and microporosity. Megías R; Vercher-Martínez A; Belda R; Peris JL; Larrainzar-Garijo R; Giner E; Fuenmayor FJ Comput Methods Programs Biomed; 2022 Jun; 219():106764. PubMed ID: 35366593 [TBL] [Abstract][Full Text] [Related]
14. Modeling and experimental validation of trabecular bone damage, softening and densification under large compressive strains. Hosseini HS; Pahr DH; Zysset PK J Mech Behav Biomed Mater; 2012 Nov; 15():93-102. PubMed ID: 23032429 [TBL] [Abstract][Full Text] [Related]
15. A transversally isotropic elasto-damage constitutive model for the periodontal ligament. Natali AN; Pavan PG; Carniel EL; Dorow C Comput Methods Biomech Biomed Engin; 2003; 6(5-6):329-36. PubMed ID: 14675953 [TBL] [Abstract][Full Text] [Related]
16. Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes. Einstein DR; Reinhall P; Nicosia M; Cochran RP; Kunzelman K Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):33-44. PubMed ID: 12623436 [TBL] [Abstract][Full Text] [Related]
17. Logarithmic rate based elasto-viscoplastic cyclic constitutive model for soft biological tissues. Zhu Y; Kang G; Yu C; Poh LH J Mech Behav Biomed Mater; 2016 Aug; 61():397-409. PubMed ID: 27108349 [TBL] [Abstract][Full Text] [Related]
18. A nonlocal constitutive model for trabecular bone softening in compression. Charlebois M; Jirásek M; Zysset PK Biomech Model Mechanobiol; 2010 Oct; 9(5):597-611. PubMed ID: 20238139 [TBL] [Abstract][Full Text] [Related]
19. Orthotropic properties of cancellous bone modelled as parameterized cellular material. Kowalczyk P Comput Methods Biomech Biomed Engin; 2006 Jun; 9(3):135-47. PubMed ID: 16880164 [TBL] [Abstract][Full Text] [Related]
20. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Pahr DH; Zysset PK Biomech Model Mechanobiol; 2008 Dec; 7(6):463-76. PubMed ID: 17972122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]