BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 22527515)

  • 1. Immunocamouflage of latex surfaces by grafted methoxypoly(ethylene glycol) (mPEG): proteomic analysis of plasma protein adsorption.
    Le Y; Li L; Wang D; Scott MD
    Sci China Life Sci; 2012 Mar; 55(3):191-201. PubMed ID: 22527515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunocamouflage: the biophysical basis of immunoprotection by grafted methoxypoly(ethylene glycol) (mPEG).
    Le Y; Scott MD
    Acta Biomater; 2010 Jul; 6(7):2631-41. PubMed ID: 20109585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative efficacy of blood cell immunocamouflage by membrane grafting of methoxypoly(ethylene glycol) and polyethyloxazoline.
    Kyluik-Price DL; Li L; Scott MD
    Biomaterials; 2014 Jan; 35(1):412-22. PubMed ID: 24074839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(oligo(ethylene glycol)acrylamide) brushes by surface initiated polymerization: effect of macromonomer chain length on brush growth and protein adsorption from blood plasma.
    Kizhakkedathu JN; Janzen J; Le Y; Kainthan RK; Brooks DE
    Langmuir; 2009 Apr; 25(6):3794-801. PubMed ID: 19708153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S; Poulin S; Hildgen P
    J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyethylene glycol-grafted polystyrene particles.
    Meng F; Engbers GH; Feijen J
    J Biomed Mater Res A; 2004 Jul; 70(1):49-58. PubMed ID: 15174108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein resistant polyurethane surfaces by chemical grafting of PEO: amino-terminated PEO as grafting reagent.
    Archambault JG; Brash JL
    Colloids Surf B Biointerfaces; 2004 Nov; 39(1-2):9-16. PubMed ID: 15542334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyethylene oxide surfaces of variable chain density by chemisorption of PEO-thiol on gold: adsorption of proteins from plasma studied by radiolabelling and immunoblotting.
    Unsworth LD; Sheardown H; Brash JL
    Biomaterials; 2005 Oct; 26(30):5927-33. PubMed ID: 15958239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size-selective protein adsorption to polystyrene surfaces by self-assembled grafted poly(ethylene glycols) with varied chain lengths.
    Lazos D; Franzka S; Ulbricht M
    Langmuir; 2005 Sep; 21(19):8774-84. PubMed ID: 16142960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced hydrophobic interaction of polystyrene surfaces by spontaneous segregation of block copolymers with oligo (ethylene glycol) methyl ether methacrylate blocks: force measurements in water using atomic force microscope with hydrophobic probes.
    Zhang R; Seki A; Ishizone T; Yokoyama H
    Langmuir; 2008 May; 24(10):5527-33. PubMed ID: 18412376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA.
    Dalsin JL; Lin L; Tosatti S; Vörös J; Textor M; Messersmith PB
    Langmuir; 2005 Jan; 21(2):640-6. PubMed ID: 15641834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical grafting of poly(ethylene glycol) methyl ether methacrylate onto polymer surfaces by atmospheric pressure plasma processing.
    D'Sa RA; Meenan BJ
    Langmuir; 2010 Feb; 26(3):1894-903. PubMed ID: 19795890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of different amphiphilic molecules onto polystyrene latices.
    Jódar-Reyes AB; Ortega-Vinuesa JL; Martín-Rodríguez A
    J Colloid Interface Sci; 2005 Feb; 282(2):439-47. PubMed ID: 15589551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonfouling biomaterials based on polyethylene oxide-containing amphiphilic triblock copolymers as surface modifying additives: adsorption of proteins from human plasma to copolymer/polyurethane blends.
    Tan J; Brash JL
    J Biomed Mater Res A; 2009 Jul; 90(1):196-204. PubMed ID: 18491394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pegylated polystyrene particles as a model system for artificial cells.
    Meng F; Engbers GH; Gessner A; Müller RH; Feijen J
    J Biomed Mater Res A; 2004 Jul; 70(1):97-106. PubMed ID: 15174113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation and purification of methoxypoly(ethylene glycol) grafted red blood cells via two-phase partitioning.
    Bradley AJ; Scott MD
    J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Jul; 807(1):163-8. PubMed ID: 15177175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immune complex binding by immunocamouflaged [poly(ethylene glycol)-grafted] erythrocytes.
    Bradley AJ; Scott MD
    Am J Hematol; 2007 Nov; 82(11):970-5. PubMed ID: 17654505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of PEGylation with linear and branched PEG chains on the adsorption of glucagon to hydrophobic surfaces.
    Pinholt C; Bukrinsky JT; Hostrup S; Frokjaer S; Norde W; Jorgensen L
    Eur J Pharm Biopharm; 2011 Jan; 77(1):139-47. PubMed ID: 21074613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of ionic strength and surface charge on protein adsorption at PEGylated surfaces.
    Pasche S; Vörös J; Griesser HJ; Spencer ND; Textor M
    J Phys Chem B; 2005 Sep; 109(37):17545-52. PubMed ID: 16853244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic analysis of protein adsorption: serum amyloid P adsorbs to materials and promotes leukocyte adhesion.
    Kim JK; Scott EA; Elbert DL
    J Biomed Mater Res A; 2005 Oct; 75(1):199-209. PubMed ID: 16082704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.