These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 22527542)
1. Biomechanical effects of polyglecaprone fibers in a polypropylene mesh after abdominal and rectovaginal implantation in a rabbit. Ozog Y; Mazza E; De Ridder D; Deprest J Int Urogynecol J; 2012 Oct; 23(10):1397-402. PubMed ID: 22527542 [TBL] [Abstract][Full Text] [Related]
2. Graft-related complications and biaxial tensiometry following experimental vaginal implantation of flat mesh of variable dimensions. Manodoro S; Endo M; Uvin P; Albersen M; Vláčil J; Engels A; Schmidt B; De Ridder D; Feola A; Deprest J BJOG; 2013 Jan; 120(2):244-250. PubMed ID: 23240803 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of the histological and biomechanical properties of poly-4-hydroxybutyrate scaffold for pelvic organ prolapse, compared with polypropylene mesh in a rabbit model. O'Shaughnessy D; Grande D; El-Neemany D; Sajjan S; Pillalamarri N; Shalom D; Winkler H Int Urogynecol J; 2022 Aug; 33(8):2213-2220. PubMed ID: 34125243 [TBL] [Abstract][Full Text] [Related]
4. Comparison of polypropylene mesh and porcine-derived, cross-linked urinary bladder matrix materials implanted in the rabbit vagina and abdomen. Fan X; Wang Y; Wang Y; Xu H Int Urogynecol J; 2014 May; 25(5):683-9. PubMed ID: 24291809 [TBL] [Abstract][Full Text] [Related]
5. Biomechanical properties of synthetic and biologic graft materials following long-term implantation in the rabbit abdomen and vagina. Pierce LM; Grunlan MA; Hou Y; Baumann SS; Kuehl TJ; Muir TW Am J Obstet Gynecol; 2009 May; 200(5):549.e1-8. PubMed ID: 19285647 [TBL] [Abstract][Full Text] [Related]
6. Persistence of polypropylene mesh anisotropy after implantation: an experimental study. Ozog Y; Konstantinovic M; Werbrouck E; De Ridder D; Mazza E; Deprest J BJOG; 2011 Sep; 118(10):1180-5. PubMed ID: 21668770 [TBL] [Abstract][Full Text] [Related]
7. Comparative study of peritoneal adhesions after intraperitoneal implantation in rats of meshes of polypropylene versus polypropylene/polyglecaprone versus polyester/porcine collagen. Ribeiro WG; Rodrigues DVS; Atta FFM; Ramos ISF; Frazão FNS; Torres OJM; Pitombo MB Acta Cir Bras; 2019 Aug; 34(6):e201900603. PubMed ID: 31432994 [TBL] [Abstract][Full Text] [Related]
8. TENSIOMETRIC ANALYSIS OF MESHES USED IN ABDOMINAL VENTRAL WALL DEFECTS IN RATS. Utrabo CAL; Czeczko NG; Busato CR; Montemór-Netto MR; Lipinski L; Malafaia O Arq Bras Cir Dig; 2017; 30(3):165-168. PubMed ID: 29019554 [TBL] [Abstract][Full Text] [Related]
10. EFFECTS OF ETHYLENE OXIDE RESTERILISATION AND IN-VITRO DEGRADATION ON MECHANICAL PROPERTIES OF PARTIALLY ABSORBABLE COMPOSITE HERNIA MESHES. Endogan T; Ozyaylali I; Kulacoglu H; Serbetci K; Kiyak G; Hasirci N East Afr Med J; 2013 Jun; 90(6):195-201. PubMed ID: 26859026 [TBL] [Abstract][Full Text] [Related]
11. Postimplant behavior of lightweight polypropylene meshes in an experimental model of abdominal hernia. Bellon JM; Rodriguez M; Garcia-Honduvilla N; Gomez-Gil V; Pascual G; Bujan J J Invest Surg; 2008; 21(5):280-7. PubMed ID: 19160136 [TBL] [Abstract][Full Text] [Related]
12. Biomechanical and histological evaluation of abdominal wall compliance with intraperitoneal onlay mesh implants in rabbits: a comparison of six different state-of-the-art meshes. Konerding MA; Chantereau P; Delventhal V; Holste JL; Ackermann M Med Eng Phys; 2012 Sep; 34(7):806-16. PubMed ID: 21992970 [TBL] [Abstract][Full Text] [Related]
13. Characteristics of the fibroplasia and collagen expression in the abdominal wall after implant of the polypropylene mesh and polypropylene/polyglecaprone mesh in rats. Biondo-Simões Mde L; Morais CG; Tocchio AF; Miranda RA; Moura PA; Colla K; Robes RR; Ioshii SO; Tomasich FD Acta Cir Bras; 2016 May; 31(5):294-9. PubMed ID: 27275849 [TBL] [Abstract][Full Text] [Related]
14. Effect of copaiba oil on correction of abdominal wall defect treated with the use of polypropylene/polyglecaprone mesh. Yasojima EY; Teixeira RK; Houat Ade P; Costa FL; Silveira EL; Brito MV; Lopes Filho Gde J Acta Cir Bras; 2013 Feb; 28(2):131-5. PubMed ID: 23370927 [TBL] [Abstract][Full Text] [Related]
15. Changes in pelvic organ prolapse mesh mechanical properties following implantation in rats. Ulrich D; Edwards SL; Alexander DLJ; Rosamilia A; Werkmeister JA; Gargett CE; Letouzey V Am J Obstet Gynecol; 2016 Feb; 214(2):260.e1-260.e8. PubMed ID: 26348376 [TBL] [Abstract][Full Text] [Related]
16. In vivo biomechanical properties of heavy versus light weight monofilament polypropylene meshes. Does the knitting pattern matter? Bigozzi MA; Provenzano S; Maeda F; Palma P; Riccetto C Neurourol Urodyn; 2017 Jan; 36(1):73-79. PubMed ID: 26436858 [TBL] [Abstract][Full Text] [Related]
17. New Zealand white rabbit: a novel model for prolapse mesh implantation via a lumbar colpopexy. Knight KM; Artsen AM; Routzong MR; King GE; Abramowitch SD; Moalli PA Int Urogynecol J; 2020 Jan; 31(1):91-99. PubMed ID: 31418044 [TBL] [Abstract][Full Text] [Related]
18. Assessment of Electrospun and Ultra-lightweight Polypropylene Meshes in the Sheep Model for Vaginal Surgery. Hympánová L; Rynkevic R; Román S; Mori da Cunha MGMC; Mazza E; Zündel M; Urbánková I; Gallego MR; Vange J; Callewaert G; Chapple C; MacNeil S; Deprest J Eur Urol Focus; 2020 Jan; 6(1):190-198. PubMed ID: 30049658 [TBL] [Abstract][Full Text] [Related]
19. Searching for the best polypropylene mesh to be used in bowel contamination. Díaz-Godoy A; García-Ureña MA; López-Monclús J; Vega Ruíz V; Melero Montes D; Erquinigo Agurto N Hernia; 2011 Apr; 15(2):173-9. PubMed ID: 21152940 [TBL] [Abstract][Full Text] [Related]
20. Shrinkage and biomechanical evaluation of lightweight synthetics in a rabbit model for primary fascial repair. Ozog Y; Konstantinovic ML; Werbrouck E; De Ridder D; Edoardo M; Deprest J Int Urogynecol J; 2011 Sep; 22(9):1099-108. PubMed ID: 21562913 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]