These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 2252773)

  • 41. Removal of serum beta-2 microglobulin using high-performance membranes and analysis of changes in serum BMG levels after dialysis.
    Yasuhiro I; Eiichi N; Mineo O; Muneto Y; Toshihiro I; Masahiro F; Yoshifumi N; Masahito M; Ryuichi M
    Am J Nephrol; 1998; 18(3):228-32. PubMed ID: 9627039
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Choice of dialyzers for HDF.
    Yamashita AC; Sakurai K
    Contrib Nephrol; 2011; 168():146-152. PubMed ID: 20938135
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A pilot study comparing the efficiency of a novel asymmetric cellulose triacetate (ATA) dialyser membrane (Solacea-190H) to a standard high flux polysulfone dialyser membrane (FX-80) in the setting of extended hours haemodialysis.
    Kameshwar K; Damasiewicz MJ; Polkinghorne KR; Kerr PG
    Nephrology (Carlton); 2022 Jun; 27(6):494-500. PubMed ID: 35195932
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Comparison of dialyzers in on-line hemodiafiltration].
    Maduell F; Navarro V; Hernández-Jaras J; Calvo C
    Nefrologia; 2000; 20(3):269-76. PubMed ID: 10917004
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optimal Design of Dialyzers.
    Mineshima M
    Contrib Nephrol; 2017; 189():204-209. PubMed ID: 27951569
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reprocessing high-flux polysulfone dialyzers does not negatively impact solute removal in short-daily online hemodiafiltration.
    Melo NC; Moyses RM; Elias RM; Castro MC
    Hemodial Int; 2014 Apr; 18(2):473-80. PubMed ID: 24393428
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Factors affecting beta 2-microglobulin plasma concentration during hemodialysis.
    Martin-Malo A; Mallol J; Castillo D; Barrio V; Burdiel LG; Perez R; Aljama P
    Int J Artif Organs; 1989 Aug; 12(8):509-14. PubMed ID: 2681000
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Technical and clinical evaluation of a new asymmetric polysulfone membrane (Biosulfane).
    Ronco C; Brendolan A; Crepaldi C; Bettini MC; Scabardi M; Cappellari F; Tasinazzo L; Fortunato L; La Greca G
    Int J Artif Organs; 1993 Aug; 16(8):573-84. PubMed ID: 8225648
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A sad but forgotten truth: the story of slow-moving solutes in fast hemodialysis.
    Eloot S; Van Biesen W; Vanholder R
    Semin Dial; 2012; 25(5):505-9. PubMed ID: 22925227
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Preferred performance of the high-performance membrane in the case of online hemodiafiltration.
    Kawanishi H
    Contrib Nephrol; 2011; 173():36-43. PubMed ID: 21865774
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A study of the basic principles determining the performance of several high-flux dialyzers.
    Jindal KK; McDougall J; Woods B; Nowakowski L; Goldstein MB
    Am J Kidney Dis; 1989 Dec; 14(6):507-11. PubMed ID: 2688406
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Does an alteration of dialyzer design and geometry affect biocompatibility parameters?
    Opatrný K; Krouzzecký A; Polanská K; Mares J; Tomsů M; Bowry SK; Vienken J
    Hemodial Int; 2006 Apr; 10(2):201-8. PubMed ID: 16623675
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transport Characteristics of Asymmetric Cellulose Triacetate Hemodialysis Membranes.
    Kim TR; Hadidi M; Motevalian SP; Sunohara T; Zydney AL
    Blood Purif; 2018; 45(1-3):46-52. PubMed ID: 29161718
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Automatic re-utilization of capillary dialysis].
    Szepietowski T; Uzar J
    Polim Med; 1989; 19(3-4):107-18. PubMed ID: 2641400
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Clinical evaluation of a flat plate dialyzer equipped with a polycarbonate polyether copolymer membrane.
    Jacobs C; Sari R
    Blood Purif; 1986; 4(1-3):32-9. PubMed ID: 3730158
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Elimination of beta 2-microglobulin by a new polyacrylonitrile membrane dialyser: mechanism and physiokinetics.
    Akizawa T; Koshikawa S; Nakazawa R; Yoshida T; Kaneko M; Nitadori Y
    Nephrol Dial Transplant; 1989; 4(5):356-65. PubMed ID: 2505186
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Studies of the possibility of multiple use of capillary dialyzers. II. Effectiveness of the elimination of urea and creatinine].
    Szepietowski T; Uzar J
    Polim Med; 1986; 16(3-4):123-35. PubMed ID: 3588428
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Beta 2-microglobulin kinetics during haemofiltration.
    Floege J; Wilks M; Shaldon S; Koch KM; Smeby LC
    Nephrol Dial Transplant; 1988; 3(6):784-9. PubMed ID: 3147420
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of increasing dialysate flow rate on diffusive mass transfer of urea, phosphate and beta2-microglobulin during clinical haemodialysis.
    Bhimani JP; Ouseph R; Ward RA
    Nephrol Dial Transplant; 2010 Dec; 25(12):3990-5. PubMed ID: 20543211
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dialyzer-dependent changes in solute and water permeability with bleach reprocessing.
    Scott MK; Mueller BA; Sowinski KM; Clark WR
    Am J Kidney Dis; 1999 Jan; 33(1):87-96. PubMed ID: 9915272
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.