These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 2252793)

  • 1. An implanted peritoneal oxygen tonometer that can be calibrated in situ.
    Spokane RB; Clark LC; Bhargava HK; Burden MK; Davis SL
    ASAIO Trans; 1990; 36(3):M719-22. PubMed ID: 2252793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue oxygen tension in rabbits measured with a galvanic electrode.
    Towell ME; Lysak I; Layne EC; Bessman SP
    J Appl Physiol; 1976 Aug; 41(2):245-50. PubMed ID: 956108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defining the period of recovery of the glucose concentration after its local perturbation by the implantation of a miniature sensor.
    Chen T; Schmidtke DW; Heller A
    Clin Chem Lab Med; 2002 Aug; 40(8):786-9. PubMed ID: 12392305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen tension at the subcutaneous implantation site of glucose sensors.
    Fischer U; Hidde A; Herrmann S; von Woedtke T; Rebrin K; Abel P
    Biomed Biochim Acta; 1989; 48(11-12):965-71. PubMed ID: 2636841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous direct tissue oxygen tension measurement by a new method using an implantable silastic tonometer and oxygen polarography.
    Gottrup F; Firmin R; Chang N; Goodson WH; Hunt TK
    Am J Surg; 1983 Sep; 146(3):399-403. PubMed ID: 6614338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A glucose biosensor based on an oxygen electrode: in-vitro performances in model buffer solution and in blood plasma.
    Yang S; Atanasov P; Wilkins E
    Biomed Instrum Technol; 1996; 30(1):55-61. PubMed ID: 8850596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implantable glucose sensors: choosing the appropriate sensing strategy.
    Pickup JC; Shaw GW; Claremont DJ
    Biosensors; 1987-1988; 3(6):335-46. PubMed ID: 3506807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-lived implanted silastic drum glucose sensors.
    Clark LC; Spokane RB; Sudan R; Stroup TL
    ASAIO Trans; 1987; 33(3):323-8. PubMed ID: 3314926
    [No Abstract]   [Full Text] [Related]  

  • 9. A continuous glucose sensor based on wired enzyme technology -- results from a 3-day trial in patients with type 1 diabetes.
    Feldman B; Brazg R; Schwartz S; Weinstein R
    Diabetes Technol Ther; 2003; 5(5):769-79. PubMed ID: 14633342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic glucose sensors. Improved long-term performance in vitro and in vivo.
    Updike SJ; Shults MC; Rhodes RK; Gilligan BJ; Luebow JO; von Heimburg D
    ASAIO J; 1994; 40(2):157-63. PubMed ID: 8003752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Estimation of biocompatibility of fibers with large mechanical resistance].
    Zywicka B
    Polim Med; 2004; 34(3):3-48. PubMed ID: 15631154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and validation of implantable electrodes for the measurement of oxygen and glucose.
    Brunstein E; Abel P; Gens A; Eich K; Woedtke TV
    Biomed Biochim Acta; 1989; 48(11-12):911-7. PubMed ID: 2636836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects on the peritoneal membrane of rabbits of a single bicarbonate solution containing glycylglycine.
    Yatzidis H
    Adv Perit Dial; 1994; 10():251-5. PubMed ID: 7999839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of time point of calibration on accuracy of continuous glucose monitoring in individuals with type 1 diabetes.
    Zueger T; Diem P; Mougiakakou S; Stettler C
    Diabetes Technol Ther; 2012 Jul; 14(7):583-8. PubMed ID: 22512266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collection and analysis of peritoneal fluid from healthy llamas and alpacas.
    Cebra CK; Tornquist SJ; Reed SK
    J Am Vet Med Assoc; 2008 May; 232(9):1357-61. PubMed ID: 18447782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ calibration of implanted electrochemical glucose sensors.
    von Woedtke T; Rebrin K; Fischer U; Abel P; Wilke W; Vogt L; Albrecht G
    Biomed Biochim Acta; 1989; 48(11-12):943-52. PubMed ID: 2636839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-Term Home Study on Nocturnal Hypoglycemic Alarms Using a New Fully Implantable Continuous Glucose Monitoring System in Type 1 Diabetes.
    Wang X; Ioacara S; DeHennis A
    Diabetes Technol Ther; 2015 Nov; 17(11):780-6. PubMed ID: 26177299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo evaluation of monopolar intravascular PO2 electrodes.
    Beran AV; Shigezawa GY; Whiteside DA; Yeung HN; Huxtable RF
    Pediatr Res; 1979 Jul; 13(7):821-6. PubMed ID: 481954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain oxygen monitoring: in-vitro accuracy, long-term drift and response-time of Licox- and Neurotrend sensors.
    Hoelper BM; Alessandri B; Heimann A; Behr R; Kempski O
    Acta Neurochir (Wien); 2005 Jul; 147(7):767-74; discussion 774. PubMed ID: 15889319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Usefulness of whole blood, plasma, peritoneal fluid, and peritoneal fluid supernatant glucose concentrations obtained by a veterinary point-of-care glucometer to identify septic peritonitis in dogs with peritoneal effusion.
    Koenig A; Verlander LL
    J Am Vet Med Assoc; 2015 Nov; 247(9):1027-32. PubMed ID: 26480011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.