These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 22528079)

  • 1. Rapid generation of dityrosine cross-linked Aβ oligomers via Cu-redox cycling.
    Gunn AP; Roberts BR; Bush AI
    Methods Mol Biol; 2012; 849():3-10. PubMed ID: 22528079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper mediates dityrosine cross-linking of Alzheimer's amyloid-beta.
    Atwood CS; Perry G; Zeng H; Kato Y; Jones WD; Ling KQ; Huang X; Moir RD; Wang D; Sayre LM; Smith MA; Chen SG; Bush AI
    Biochemistry; 2004 Jan; 43(2):560-8. PubMed ID: 14717612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper, dityrosine cross-links and amyloid-β aggregation.
    Vázquez G; Caballero AB; Kokinda J; Hijano A; Sabaté R; Gamez P
    J Biol Inorg Chem; 2019 Dec; 24(8):1217-1229. PubMed ID: 31667594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dityrosine cross-linked Abeta peptides: fibrillar beta-structure in Abeta(1-40) is conducive to formation of dityrosine cross-links but a dityrosine cross-link in Abeta(8-14) does not induce beta-structure.
    Yoburn JC; Tian W; Brower JO; Nowick JS; Glabe CG; Van Vranken DL
    Chem Res Toxicol; 2003 Apr; 16(4):531-5. PubMed ID: 12703970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper Redox Cycling Inhibits Aβ Fibre Formation and Promotes Fibre Fragmentation, while Generating a Dityrosine Aβ Dimer.
    Gu M; Bode DC; Viles JH
    Sci Rep; 2018 Nov; 8(1):16190. PubMed ID: 30385800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying, by first-principles simulations, Cu[amyloid-β] species making Fenton-type reactions in Alzheimer's disease.
    La Penna G; Hureau C; Andreussi O; Faller P
    J Phys Chem B; 2013 Dec; 117(51):16455-67. PubMed ID: 24313818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction rates and mechanism of the ascorbic acid oxidation by molecular oxygen facilitated by Cu(II)-containing amyloid-beta complexes and aggregates.
    Jiang D; Li X; Liu L; Yagnik GB; Zhou F
    J Phys Chem B; 2010 Apr; 114(14):4896-903. PubMed ID: 20302320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cupric-amyloid beta peptide complex stimulates oxidation of ascorbate and generation of hydroxyl radical.
    Dikalov SI; Vitek MP; Mason RP
    Free Radic Biol Med; 2004 Feb; 36(3):340-7. PubMed ID: 15036353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The redox chemistry of the Alzheimer's disease amyloid beta peptide.
    Smith DG; Cappai R; Barnham KJ
    Biochim Biophys Acta; 2007 Aug; 1768(8):1976-90. PubMed ID: 17433250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dimerisation of N-acetyl-L-tyrosine ethyl ester and Abeta peptides via formation of dityrosine.
    Ali FE; Leung A; Cherny RA; Mavros C; Barnham KJ; Separovic F; Barrow CJ
    Free Radic Res; 2006 Jan; 40(1):1-9. PubMed ID: 16298754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amyloid beta-Cu2+ complexes in both monomeric and fibrillar forms do not generate H2O2 catalytically but quench hydroxyl radicals.
    Nadal RC; Rigby SE; Viles JH
    Biochemistry; 2008 Nov; 47(44):11653-64. PubMed ID: 18847222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biophysical analyses of synthetic amyloid-beta(1-42) aggregates before and after covalent cross-linking. Implications for deducing the structure of endogenous amyloid-beta oligomers.
    Moore BD; Rangachari V; Tay WM; Milkovic NM; Rosenberry TL
    Biochemistry; 2009 Dec; 48(49):11796-806. PubMed ID: 19916493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of fibril formation by a beta-sheet breaker peptide ligand: an electrochemical approach.
    Veloso AJ; Kerman K
    Bioelectrochemistry; 2012 Apr; 84():49-52. PubMed ID: 21967982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective Cu2+/ascorbate-dependent oxidation of alzheimer's disease beta-amyloid peptides.
    Schöneich C
    Ann N Y Acad Sci; 2004 Mar; 1012():164-70. PubMed ID: 15105263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox chemistry of copper-amyloid-beta: the generation of hydroxyl radical in the presence of ascorbate is linked to redox-potentials and aggregation state.
    Guilloreau L; Combalbert S; Sournia-Saquet A; Mazarguil H; Faller P
    Chembiochem; 2007 Jul; 8(11):1317-25. PubMed ID: 17577900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A copper-hydrogen peroxide redox system induces dityrosine cross-links and chemokine oligomerisation.
    MacGregor HJ; Kato Y; Marshall LJ; Nevell TG; Shute JK
    Cytokine; 2011 Dec; 56(3):669-75. PubMed ID: 21963154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A central role for dityrosine crosslinking of Amyloid-β in Alzheimer's disease.
    Al-Hilaly YK; Williams TL; Stewart-Parker M; Ford L; Skaria E; Cole M; Bucher WG; Morris KL; Sada AA; Thorpe JR; Serpell LC
    Acta Neuropathol Commun; 2013 Dec; 1():83. PubMed ID: 24351276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling copper binding to the amyloid-β peptide at different pH: toward a molecular mechanism for Cu reduction.
    Furlan S; Hureau C; Faller P; La Penna G
    J Phys Chem B; 2012 Oct; 116(39):11899-910. PubMed ID: 22974015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox reactions of copper complexes formed with different beta-amyloid peptides and their neuropathological [correction of neuropathalogical] relevance.
    Jiang D; Men L; Wang J; Zhang Y; Chickenyen S; Wang Y; Zhou F
    Biochemistry; 2007 Aug; 46(32):9270-82. PubMed ID: 17636872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Cu(II) on the aggregation of amyloid-β.
    Weibull MGM; Simonsen S; Oksbjerg CR; Tiwari MK; Hemmingsen L
    J Biol Inorg Chem; 2019 Dec; 24(8):1197-1215. PubMed ID: 31602542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.