These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 22528079)

  • 21. A comprehensive study on the generation of reactive oxygen species in Cu-Aβ-catalyzed redox processes.
    Huang H; Lou X; Hu B; Zhou Z; Chen J; Tian Y
    Free Radic Biol Med; 2019 May; 135():125-131. PubMed ID: 30849487
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ab initio modelling of the structure and redox behaviour of copper(I) bound to a His-His model peptide: relevance to the beta-amyloid peptide of Alzheimer's disease.
    Raffa DF; Rickard GA; Rauk A
    J Biol Inorg Chem; 2007 Feb; 12(2):147-64. PubMed ID: 17013614
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aluminum, copper, iron and zinc differentially alter amyloid-Aβ(1-42) aggregation and toxicity.
    Bolognin S; Messori L; Drago D; Gabbiani C; Cendron L; Zatta P
    Int J Biochem Cell Biol; 2011 Jun; 43(6):877-85. PubMed ID: 21376832
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A mimotope of Aβ oligomers may also behave as a β-sheet inhibitor.
    Zhang YX; Wang SW; Lu S; Zhang LX; Liu DQ; Ji M; Wang WY; Liu RT
    FEBS Lett; 2017 Nov; 591(21):3615-3624. PubMed ID: 28976547
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer's disease beta-amyloid.
    Barnham KJ; Haeffner F; Ciccotosto GD; Curtain CC; Tew D; Mavros C; Beyreuther K; Carrington D; Masters CL; Cherny RA; Cappai R; Bush AI
    FASEB J; 2004 Sep; 18(12):1427-9. PubMed ID: 15231727
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Methionine does not reduce Cu(II)-beta-amyloid!--rectification of the roles of methionine-35 and reducing agents in metal-centered oxidation chemistry of Cu(II)-beta-amyloid.
    da Silva GF; Lykourinou V; Angerhofer A; Ming LJ
    Biochim Biophys Acta; 2009 Jan; 1792(1):49-55. PubMed ID: 19061952
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An integrated study of the affinities of the Aβ16 peptide for Cu(I) and Cu(II): implications for the catalytic production of reactive oxygen species.
    Young TR; Kirchner A; Wedd AG; Xiao Z
    Metallomics; 2014 Mar; 6(3):505-17. PubMed ID: 24493126
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Key roles of Tyr 10 in Cu bound Aβ complexes and its relevance to Alzheimer's disease.
    Lu N; Li J; Gao Z
    Arch Biochem Biophys; 2015 Oct; 584():1-9. PubMed ID: 26247837
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Numerical Simulations Reveal Randomness of Cu(II) Induced Aβ Peptide Dimerization under Conditions Present in Glutamatergic Synapses.
    Goch W; Bal W
    PLoS One; 2017; 12(1):e0170749. PubMed ID: 28125716
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation on the influence of (Z)-3-(2-(3-chlorophenyl)hydrazono)-5,6-dihydroxyindolin-2-one (PT2) on β-amyloid(1-40) aggregation and toxicity.
    Catto M; Arnesano F; Palazzo G; De Stradis A; Calò V; Losacco M; Purgatorio R; Campagna F
    Arch Biochem Biophys; 2014 Oct; 560():73-82. PubMed ID: 25051344
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strategies Employing Transition Metal Complexes To Modulate Amyloid-β Aggregation.
    Suh JM; Kim G; Kang J; Lim MH
    Inorg Chem; 2019 Jan; 58(1):8-17. PubMed ID: 30556393
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the generation of OH(·) radical species from H2O2 by Cu(I) amyloid beta peptide model complexes: a DFT investigation.
    Prosdocimi T; De Gioia L; Zampella G; Bertini L
    J Biol Inorg Chem; 2016 Apr; 21(2):197-212. PubMed ID: 26711660
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Redox cycling of copper-amyloid β 1-16 peptide complexes is highly dependent on the coordination mode.
    Trujano-Ortiz LG; González FJ; Quintanar L
    Inorg Chem; 2015 Jan; 54(1):4-6. PubMed ID: 25521160
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three histidine residues of amyloid-beta peptide control the redox activity of copper and iron.
    Nakamura M; Shishido N; Nunomura A; Smith MA; Perry G; Hayashi Y; Nakayama K; Hayashi T
    Biochemistry; 2007 Nov; 46(44):12737-43. PubMed ID: 17929832
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Small angle X-ray scattering analysis of Cu(2+)-induced oligomers of the Alzheimer's amyloid β peptide.
    Ryan TM; Kirby N; Mertens HD; Roberts B; Barnham KJ; Cappai R; Pham Cle L; Masters CL; Curtain CC
    Metallomics; 2015 Mar; 7(3):536-43. PubMed ID: 25687761
    [TBL] [Abstract][Full Text] [Related]  

  • 36. pH-dependent kinetics of copper ions binding to amyloid-β peptide.
    Bin Y; Chen S; Xiang J
    J Inorg Biochem; 2013 Feb; 119():21-7. PubMed ID: 23174653
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insights into Formation and Structure of Aβ Oligomers Cross-Linked via Tyrosines.
    Zhang S; Fox DM; Urbanc B
    J Phys Chem B; 2017 Jun; 121(22):5523-5535. PubMed ID: 28482661
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cu²⁺ accentuates distinct misfolding of Aβ₁₋₄₀ and Aβ₁₋₄₂ peptides, and potentiates membrane disruption.
    Matheou CJ; Younan ND; Viles JH
    Biochem J; 2015 Mar; 466(2):233-42. PubMed ID: 25471541
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unmodified and pyroglutamylated amyloid β peptides form hypertoxic hetero-oligomers of unique secondary structure.
    Goldblatt G; Cilenti L; Matos JO; Lee B; Ciaffone N; Wang QX; Tetard L; Teter K; Tatulian SA
    FEBS J; 2017 May; 284(9):1355-1369. PubMed ID: 28294556
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of oxidation on copper-binding properties of Aβ1-16 peptide: a pulse radiolysis study.
    Ramteke SN; Ginotra YP; Walke GR; Joshi BN; Kumbhar AS; Rapole S; Kulkarni PP
    Free Radic Res; 2013 Dec; 47(12):1046-53. PubMed ID: 24074186
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.